Journal of Differential Geometry

Hamiltonian stability of the Gauss images of homogeneous isoparametric hypersurfaces, I

Hui Ma and Yoshihiro Ohnita

Full-text: Open access

Abstract

The image of the Gauss map of any oriented isoparametric hypersurface in the standard unit sphere $S^{n+1}(1)$ is a minimal Lagrangian submanifold in the complex hyperquadric $Q_n(\mathrm{C})$. In this paper we show that the Gauss image of a compact oriented isoparametric hypersurface with $g$ distinct constant principal curvatures in $S^{n+1}(1)$ is a compact monotone and cyclic embedded Lagrangian submanifold with minimal Maslov number $2n / g$. We obtain the Hamiltonian stability of the Gauss images of homogeneous isoparametric hypersurfaces of classical type with $g = 4$. Combining with our results in On Lagrangian submanifolds in complex hyperquadrics and isoparametric hypersurfaces in spheres and Hamiltonian stability of the Gauss images of homogeneous isoparametric hypersurfaces II, we completely determine the Hamiltonian stability of the Gauss images of all homogeneous isoparametric hypersurfaces.

Article information

Source
J. Differential Geom., Volume 97, Number 2 (2014), 275-348.

Dates
First available in Project Euclid: 15 July 2014

Permanent link to this document
https://projecteuclid.org/euclid.jdg/1405447807

Digital Object Identifier
doi:10.4310/jdg/1405447807

Mathematical Reviews number (MathSciNet)
MR3263508

Zentralblatt MATH identifier
1306.53053

Citation

Ma, Hui; Ohnita, Yoshihiro. Hamiltonian stability of the Gauss images of homogeneous isoparametric hypersurfaces, I. J. Differential Geom. 97 (2014), no. 2, 275--348. doi:10.4310/jdg/1405447807. https://projecteuclid.org/euclid.jdg/1405447807


Export citation