Journal of Differential Geometry

Instantons, concordance, and Whitehead doubling

Matthew Hedden and Paul Kirk

Full-text: Open access

Abstract

We use moduli spaces of instantons and Chern-Simons invariants of flat connections to prove that the Whitehead doubles of $(2, 2^n − 1)$ torus knots are independent in the smooth knot concordance group; that is, they freely generate a subgroup of infinite rank.

Article information

Source
J. Differential Geom., Volume 91, Number 2 (2012), 281-319.

Dates
First available in Project Euclid: 8 August 2012

Permanent link to this document
https://projecteuclid.org/euclid.jdg/1344430825

Digital Object Identifier
doi:10.4310/jdg/1344430825

Mathematical Reviews number (MathSciNet)
MR2971290

Zentralblatt MATH identifier
1256.57006

Citation

Hedden, Matthew; Kirk, Paul. Instantons, concordance, and Whitehead doubling. J. Differential Geom. 91 (2012), no. 2, 281--319. doi:10.4310/jdg/1344430825. https://projecteuclid.org/euclid.jdg/1344430825


Export citation