Journal of Differential Geometry

Kohn-Rossi cohomology and its application to the complex Plateau problem, III

Rong Du and Stephen Yau

Full-text: Open access

Abstract

Let $X$ be a compact connected strongly pseudoconvex $CR$ manifold of real dimension $2_{n − 1}$ in $\mathbb{C}^N$. It has been an interesting question to find an intrinsic smoothness criteria for the complex Plateau problem. For $n\ge 3$ and $N = n+1$, Yau found a necessary and sufficient condition for the interior regularity of the Harvey– Lawson solution to the complex Plateau problem by means of Kohn–Rossi cohomology groups on $X$ in 1981. For $n = 2$ and $N \ge n + 1$, the problem has been open for over 30 years. In this paper we introduce a new CR invariant $g^{(1,1)}(X)$ of $X$. The vanishing of this invariant will give the interior regularity of the Harvey–Lawson solution up to normalization. In the case $n = 2$ and $N = 3$, the vanishing of this invariant is enough to give the interior regularity.

Article information

Source
J. Differential Geom., Volume 90, Number 2 (2012), 251-266.

Dates
First available in Project Euclid: 24 April 2012

Permanent link to this document
https://projecteuclid.org/euclid.jdg/1335230846

Digital Object Identifier
doi:10.4310/jdg/1335230846

Mathematical Reviews number (MathSciNet)
MR2899875

Zentralblatt MATH identifier
1254.32051

Citation

Du, Rong; Yau, Stephen. Kohn-Rossi cohomology and its application to the complex Plateau problem, III. J. Differential Geom. 90 (2012), no. 2, 251--266. doi:10.4310/jdg/1335230846. https://projecteuclid.org/euclid.jdg/1335230846


Export citation

See also

  • See also: Stephen S.-T. Yau. Kohn–Rossi cohomology and its application to the complex Plateau problem, I. Ann. of Math. 113 (1981), 67–110.
  • See also: Hing Sun Luk, Stephen S.-T. Yau. Kohn–Rossi cohomology and its application to the complex Plateau problem, II. J. Differential Geometry 77 (2007) 135–148.