Journal of Differential Geometry
- J. Differential Geom.
- Volume 48, Number 3 (1998), 445-495.
Lie group valued moment maps
Anton Alekseev, Anton Malkin, and Eckhard Meinrenken
Full-text: Open access
Article information
Source
J. Differential Geom., Volume 48, Number 3 (1998), 445-495.
Dates
First available in Project Euclid: 26 June 2008
Permanent link to this document
https://projecteuclid.org/euclid.jdg/1214460860
Digital Object Identifier
doi:10.4310/jdg/1214460860
Mathematical Reviews number (MathSciNet)
MR1638045
Zentralblatt MATH identifier
0948.53045
Subjects
Primary: 58F05
Secondary: 55N91: Equivariant homology and cohomology [See also 19L47] 57S25: Groups acting on specific manifolds
Citation
Alekseev, Anton; Malkin, Anton; Meinrenken, Eckhard. Lie group valued moment maps. J. Differential Geom. 48 (1998), no. 3, 445--495. doi:10.4310/jdg/1214460860. https://projecteuclid.org/euclid.jdg/1214460860
References
- [1] A. Yu. Alekseev, On Poisson actions of compact Lie groups on symplectic manifolds, J. Differential Geom. 45 (1997) 241-256.Zentralblatt MATH: 0912.53018
Mathematical Reviews (MathSciNet): MR1449971
Project Euclid: euclid.jdg/1214459796 - [2] A. Yu. Alekseev and A. Z. Malkin, Symplectic structure of the moduli space of at connections on a Riemann surface, Comm. Math. Phys. 169 (1995) 99-119.Zentralblatt MATH: 0829.53028
Mathematical Reviews (MathSciNet): MR1328263
Digital Object Identifier: doi:10.1007/BF02101598
Project Euclid: euclid.cmp/1104272613 - [3] M. F. Atiyah and R. Bott, The Yang-Mills equations over Riemann surfaces, Philos. Trans. Roy. Soc. London 308 (1982) 523-615.Zentralblatt MATH: 0509.14014
Mathematical Reviews (MathSciNet): MR702806
Digital Object Identifier: doi:10.1098/rsta.1983.0017
JSTOR: links.jstor.org - [4] S. K. Donaldson, Boundary value problems for Yang-Mills elds, J. Geom. Phys. 8 (1992) 89-122.Zentralblatt MATH: 0747.53022
Mathematical Reviews (MathSciNet): MR1165874
Digital Object Identifier: doi:10.1016/0393-0440(92)90044-2 - [5] S. K. Donaldson and P. Kronheimer, The geometry of four-manifolds, Oxford Math. Monographs, 1990.
- [6] V. G. Drinfeld, Hamiltonian structures on Lie groups, Lie bialgebras and the geometric meaning of the classical Yang-Baxter equation, Soviet. Math. Dokl. 27 (1983) 68-71.
- [7] H. Flaschka and T. Ratiu, A convexity theorem for Poisson actions of compact Lie groups, Ann. Sci. Ecole Norm. Sup. 29 (1996) 787-80
- [8] V. V. Fock and A. A. Rosly, Poisson structure on moduli of at connections on Riemann surfaces and r-matrix, Preprint, 1992.
- [9] W. Goldman, The symplectic nature of fundamental groups of surfaces, Adv. Math. 54 (1984) 200-225.Zentralblatt MATH: 0574.32032
Mathematical Reviews (MathSciNet): MR762512
Digital Object Identifier: doi:10.1016/0001-8708(84)90040-9 - [10] K. Guruprasad, J. Huebschmann, L. Je rey, and A. Weinstein, Group systems, groupoids, and moduli spaces of parabolic bundles, Preprint, 1995.Mathematical Reviews (MathSciNet): MR1460627
Zentralblatt MATH: 0885.58011
Digital Object Identifier: doi:10.1215/S0012-7094-97-08917-1
Project Euclid: euclid.dmj/1077241022 - [11] J. Huebschmann, Poisson structure on certain moduli spaces for bundles on a surface, Ann. Inst. Fourier (Grenoble) 45 (1995) 65-91.
- [12] L. Je rey, Extended moduli spaces of at connections on Riemann surfaces, Math. Ann. 298 (1994) 667-692.Zentralblatt MATH: 0794.53017
Mathematical Reviews (MathSciNet): MR1268599
Digital Object Identifier: doi:10.1007/BF01459756 - [13] L. Je rey, Group cohomology construction of the cohomology of moduli spaces of at connections on 2-manifolds, Duke Math. J. 77 (1995) 407-429.Zentralblatt MATH: 0870.57013
Mathematical Reviews (MathSciNet): MR1321064
Digital Object Identifier: doi:10.1215/S0012-7094-95-07712-6
Project Euclid: euclid.dmj/1077286347 - [14] Y. Karshon, An algebraic proof for the symplectic structure of moduli space, Proc. Amer. Math. Soc. 116 (1992) 591-605.Zentralblatt MATH: 0790.14012
Mathematical Reviews (MathSciNet): MR1112494
Digital Object Identifier: doi:10.2307/2159424
JSTOR: links.jstor.org - [15] C. King and A. Sengupta, A symplectic structure on surfaces with boundary, Comm. Math. Phys. 175 (1996) 657-671.Zentralblatt MATH: 0842.58006
Mathematical Reviews (MathSciNet): MR1372813
Digital Object Identifier: doi:10.1007/BF02099512
Project Euclid: euclid.cmp/1104276096 - [16] J.-H. Lu, Momentum mappings and reduction of Poisson actions, Symplectic geometry, groupoids, and integrable systems (Berkeley, CA, 1989), Math. Sci. Res. Inst. Publ., Vol. 20, Springer, New York, 1991, 209-226.
- [17] J.-H. Lu and A. Weinstein, Poisson-Lie groups, dressing transformations and Bruhat decompositions, J. Differential Geom. 31 (1990) 501-526.Zentralblatt MATH: 0673.58018
Mathematical Reviews (MathSciNet): MR1037412
Project Euclid: euclid.jdg/1214444324 - [18] D. McDu, The moment map for circle actions on symplectic manifolds, J. Geom. Phys. 5 (1988) 149-160.Zentralblatt MATH: 0696.53023
Mathematical Reviews (MathSciNet): MR1029424
Digital Object Identifier: doi:10.1016/0393-0440(88)90001-0 - [19] E. Meinrenken and C. Woodward, A symplectic proof of Verlinde factorization, Preprint, August 1996.
- [20] E. Meinrenken and C. Woodward, Fusion of Hamiltonian loop group manifolds and cobordism, Preprint, July 1997.
- [21] A. Pressley and G. Segal, Loop groups, Oxford University Press, Oxford, 1988.Zentralblatt MATH: 0618.22011
- [22] E. Verlinde, Fusion rules and modular transformations in 2D conformal eld theory, Nuclear Phys. B 300 (1988) 360-376.Mathematical Reviews (MathSciNet): MR954762
Digital Object Identifier: doi:10.1016/0550-3213(88)90603-7 - [23] A. Weinstein, The symplectic structure on moduli space, The Floer memorial volume, Progr. Math., 133, Birkhauser, Basel, 1995, 627-635.
- [24] J. Weitsman, A Duistermaat-Heckman formula for symplectic circle actions, Internat. Math. Res. Notices 12 (1993) 309-312.Zentralblatt MATH: 0967.37500
Mathematical Reviews (MathSciNet): MR1253646
Digital Object Identifier: doi:10.1155/S1073792893000352 - [25] E. Witten, On quantum gauge theories in two dimensions, Comm. Math. Phys. 141 (1991) 153-209. Uppsala University, Sweden Yale University University of TorontoZentralblatt MATH: 0762.53063
Mathematical Reviews (MathSciNet): MR1133264
Digital Object Identifier: doi:10.1007/BF02100009
Project Euclid: euclid.cmp/1104248198

- You have access to this content.
- You have partial access to this content.
- You do not have access to this content.
More like this
- Critical values lie on a line
Ainouline, Azat, Abstract and Applied Analysis, 2004 - Homotopy groups of the spaces of self-maps of Lie groups
MARUYAMA, Ken-ichi and ŌSHIMA, Hideaki, Journal of the Mathematical Society of Japan, 2008 - One-parameter Subgroups and a Lie Subgroup of an Infinite Dimensional Rotation Group.
Sato, Hiroshi, Journal of Mathematics of Kyoto University, 1971
- Critical values lie on a line
Ainouline, Azat, Abstract and Applied Analysis, 2004 - Homotopy groups of the spaces of self-maps of Lie groups
MARUYAMA, Ken-ichi and ŌSHIMA, Hideaki, Journal of the Mathematical Society of Japan, 2008 - One-parameter Subgroups and a Lie Subgroup of an Infinite Dimensional Rotation Group.
Sato, Hiroshi, Journal of Mathematics of Kyoto University, 1971 - Power maps on $p$-regular Lie groups
Theriault, Stephen, Homology, Homotopy and Applications, 2013 - Biharmonic maps into compact Lie groups and integrable systems
URAKAWA, Hajime, Hokkaido Mathematical Journal, 2014 - Homotopy groups of the spaces of self-maps of lie groups II
Ōshima, Katsumi and Ōshima, Hideaki, Kodai Mathematical Journal, 2009 - The symplectic vortex equations and invariants of
Hamiltonian group actions
Cieliebak, Kai, Gaio, A. Rita, Mundet i Riera, Ignasi, and Salamon, Dietmar A., Journal of Symplectic Geometry, 2002 - Classifying spaces for $1$–truncated compact Lie groups
Rezk, Charles, Algebraic & Geometric Topology, 2018 - On the $K$–theory of subgroups of virtually connected Lie groups
Kasprowski, Daniel, Algebraic & Geometric Topology, 2015 - Asymptotic cones of Lie groups and cone equivalences
de Cornulier, Yves, Illinois Journal of Mathematics, 2011
