Journal of Differential Geometry

Birational symplectic manifolds and their deformations

Daniel Huybrechts

Full-text: Open access

Article information

Source
J. Differential Geom. Volume 45, Number 3 (1997), 488-513.

Dates
First available in Project Euclid: 26 June 2008

Permanent link to this document
https://projecteuclid.org/euclid.jdg/1214459840

Digital Object Identifier
doi:10.4310/jdg/1214459840

Mathematical Reviews number (MathSciNet)
MR1472886

Zentralblatt MATH identifier
0917.53010

Subjects
Primary: 32G05: Deformations of complex structures [See also 13D10, 16S80, 58H10, 58H15]
Secondary: 32J18: Compact $n$-folds

Citation

Huybrechts, Daniel. Birational symplectic manifolds and their deformations. J. Differential Geom. 45 (1997), no. 3, 488--513. doi:10.4310/jdg/1214459840. https://projecteuclid.org/euclid.jdg/1214459840.


Export citation

References

  • [1] A. Altman, A. Iarrobino and S. Kleiman, Irreducibility of the compacti ed Jacobian, Nordic Summer School. Sympos. Math. Oslo, 1976, 1-12.
  • [2] A. Beauville, Varietes Kahleriennes dont la premiere classe de Chern est nulle, J. Differential Geom. 18 (1983) 755-782.
  • [3] A. Beauville, Some remarks on Kahler manifolds with c1 = 0, Classi cation of algebraic and analytic manifolds. Progr. Math. 39 (1983) 1-26.
  • [4] F.Bogomolov, On the decomposition of Kahler manifolds with trivial canonicalclass, Math. USSR-Sb. 22 (1974) 580-583.
  • [5] F.Bogomolov, Hamiltonian Kahler manifolds, Sov. Math. Dokl. 19 (1978) 1462-1465.
  • [6] D. Burns and M. Rapoport, On the Torelli problem for Kahlerian K3 surfaces, Ann. Sci. Ecole Norm. Sup. 8 (1975) 235-274.
  • [7] O. Debarre, Un contre-exemple au theoreme de Torelli pour les varietes symplectiques irreductibles, C. R. Acad. Sci. Paris, t. 299, Serie I, 14 (1984) 681-684.
  • [8] A. Fujiki, A theorem on bimeromorphic maps of Kahler manifolds and Its applications, Publ. Res. Inst. Math. Sci. Kyoto Univ. 17 (1981) 735-754.
  • [9] A. Fujiki, On the de Rham cohomology group of a compact Kahler symplectic manifold, Adv. St. Pure Math. 10 (1987) 105-165.
  • [10] A. Fujiki and S. Nakano, Supplement to Øn the inverse of monoidal transformation", Publ. Res. Inst. Math. Sci. Kyoto Univ. 7 (1971) 637-644.
  • [11] L. Gottsche and D. Huybrechts, Hodge numbers of moduli spaces of stable bundles on K3 surfaces, Internat. J. Math. 7 (1996) 359-372.
  • [12] R. Hartshorne, Algebraic geometry, Graduate Texts in Math. Vol. 52, Springer, Berlin, 1977.
  • [13] Y. Kawamata, Unobstructed deformations-A remark on a paper of Z. Ran, J. Algebraic Geom. 1 (1992) 183-190.
  • [14] K. Kodaira and D. Spencer, On deformations of complex analytic structures III. Stability theorems for complex analytic structures, Ann. of Math. 71 (1960) 43-76.
  • [15] R. Lazarsfeld, Brill-Noether-Petri without degenerations, J. Differential Geom. 23 (1986) 299-307.
  • [16] T. Matsusaka and D. Mumford, Two fundamental theorems on deformations of polarized varieties, Amer. J. Math. 86 (1964) 668-684.
  • [17] S. Mukai, Symplectic structure of the moduli space of sheaves on an abelian or K3 surface, Invent. Math. 77 (1984) 101-116.
  • [18] S. Mori, On degrees and genera of curves on smooth quartic surfaces in P3, Nagoya Math. J. 96 (1984) 127-132.
  • [19] S. Mukai, Moduli of vector bundles on K3 surfaces, and symplectic manifolds, Sugaku Expositions 1 (2) (1988) 138-174.
  • [20] K. O'Grady, The weight-two Hodge structure of moduli spaces of sheaves on a K3 surface, Preprint, 1995.
  • [21] Z. Ran, Deformations of manifolds with torsion or negative canonical bundles, J. Algebraic Geom. 1 (1992) 279-291.
  • [22] P. Samuel, Rational equivalence of arbitrary cycles, Amer. J. Math. 78 (1956) 383-400.
  • [23] G. Scheja, Riemannsche Hebbarkeitssatze fur Cohomologieklassen, Math. Ann. 144 (1961) 345-360.
  • [24] G. Tian, Smoothness of the universal deformation space of compact Calabi-Yau manifolds and its Petersson-Weil metric, S. T. Yau, Math. Aspects of String theory, World Scientific, 1987, 629-646.
  • [25] A. N. Todorov, The Weil-Petersson geometry of the moduli space of SU (n 3) (Calabi-Yau) manifolds, Comm. Math. Phys. 126 (1989) 325-346.
  • [26] G. E. Welters, Polarized abelian varieties and the heat equation, Compositio Math. 49 (1983) 173-194.