Journal of Differential Geometry

Graph manifolds and taut foliations

Mark Brittenham, Ramin Naimi, and Rachel Roberts

Full-text: Open access

Article information

Source
J. Differential Geom., Volume 45, Number 3 (1997), 446-470.

Dates
First available in Project Euclid: 26 June 2008

Permanent link to this document
https://projecteuclid.org/euclid.jdg/1214459838

Digital Object Identifier
doi:10.4310/jdg/1214459838

Mathematical Reviews number (MathSciNet)
MR1472884

Zentralblatt MATH identifier
0896.57017

Subjects
Primary: 57R30: Foliations; geometric theory
Secondary: 57N10: Topology of general 3-manifolds [See also 57Mxx]

Citation

Brittenham, Mark; Naimi, Ramin; Roberts, Rachel. Graph manifolds and taut foliations. J. Differential Geom. 45 (1997), no. 3, 446--470. doi:10.4310/jdg/1214459838. https://projecteuclid.org/euclid.jdg/1214459838


Export citation

References

  • [1] T. Barbot, Flots d'Anosov sur les varietes graphees au sens de Waldhausen II: Caracterisation des exemples de Handel-Thurston, preprint.
  • [2] S. Bleiler and C. Hodgson, Spherical space forms and Dehn lling, Preprint.
  • [3] M. Brittenham, Essential laminations in Seifertbered spaces, Topology 32 (1993) 61-85.
  • [4] M. Brittenham, Essential laminations in Seifertberedspaces: boundary behavior, preprint, 1995.
  • [5] M. Brittenham, Incompressible tori and the space of leaves of a foliation, in preparation.
  • [6] M. Brittenham, Exceptional Seifertbered spaces and Dehn surgery on 2-bridge knots, pre- print.
  • [7] J. Christy, Standard spines and branched surfaces, preprint.
  • [8] W. Claus, Essential laminations in closed Seifertbered spaces, Thesis, Univ. of Texas at Austin, 1991.
  • [9] L. Conlon, Foliations of codimension one, Notes based on lectures at Washington University, 1989-90.
  • [10] C. Delman, Constructing essential laminations which survive all Dehn surgeries, to appear in Topology and its Applications.
  • [11] D. Eisenbud, U. Hirsch and W. Neumann, Transverse Foliations on Seifert Bundles and Self-homeomorphisms of the Circle, Comment. Math. Helv. 56 (1981) 638-660.
  • [12] M. Eudave-Mu noz, Non-hyperbolic manifolds obtained by Dehn surgery on hyperbolic knots, preprint.
  • [13] M. Eudave-Mu noz, personal communication.
  • [14] S. Fenley, Anosov ows in 3-manifolds, Ann. of Math. 139 (1994) 79-115.
  • [15] S. Fenley, Anosov ows in 3-manifolds, Limit sets of foliations in hyperbolic 3-manifolds, preprint.
  • [16] C. Feustel, A generalization of Kneser's conjecture, Pacific J. Math. 46 (1973) 123-130.
  • [17] C. Feustel and R. Gregorac, On realizing HNN groups in 3-manifolds, Pacific J. Math. 46 (1973) 381-387.
  • [18] R. Fintushel and R. Stern, Constructing Len spaces by surgery on knots, Math. Z. 175 (1980) 33-51.
  • [19] D. Gabai, Foliations and the topology of 3-manifolds, J. Differential Geom. 18 (1983) 445-503.
  • [20] D. Gabai, Foliations and 3-manifolds, Proc. ICM, Kyoto, 1990, 609-619.
  • [21] D. Gabai, Eight problems in the geometric theory of foliations and laminations on 3-manifolds, to appear in the Proc. 1993 Georgia Topology Conference.
  • [22] D. Gabai and W. Kazez, Pseudo-Anosov maps and surgery on bered 2-bridge knots, Topology and its Appl. 37 (1990) 93-100.
  • [23] D. Gabai and U. Oertel, Essential laminations in 3-manifolds, Annals of Math. 130 (1989) 41-73.
  • [24] S. Goodman, Closed leaves in foliations of codimension one, Comment. Math. Helv. 50 (1975) 383-388.
  • [25] J. Hass, Minimal surfaces in foliated manifolds, Comm. Math. Helv. 61 (1986) 1-32.
  • [26] A.Hatcher and U. Oertel, Boundary slopes for Montesinosknots, Topology 28 (1989) 453-480.
  • [27] M. Jankins and W. Neumann, Rotation numbers of products of circle homeomorphisms, Math. Ann. 271 (1985) 381-400.
  • [28] G. Levitt, Feuilletages des varietes de dimension 3 qui sont des bres en cercles, Comm. Math. Helv. 53 (1978) 572-594.
  • [29] S. Matsumoto, Foliations of Seifert numbered spaces over S2, Adv. Stud. Pure Math. 5 (1985) 325-339.
  • [30] R. Naimi, Essential laminations in 3-manifolds obtained by surgery on 2-bridge knots, Contemp. Math., Amer. Math. Soc. 164 (1994) 183-186.
  • [31] R. Naimi, Foliations transverse to bers of Seifert manifolds, Comment. Math. Helv. 69 (1994) 155-162.
  • [32] C.Palmeira, Open manifolds foliated by planes, Ann. of Math. 107 (1978) 109-121.
  • [33] J. Plante, Foliations with measure preserving holonomy, Ann. of Math. 102 (1975) 327-361.
  • [34] G. Reeb, Sur certaines proprietees topologique des varietes feuilletees, Actualites Sci. Indust. 1183 (1952) 93-154.
  • [35] R. Roberts, Constructing taut foliations, to appear in Comment. Math. Helv.
  • [36] R. Roberts, Constructing taut foliations, in preparation.
  • [37] R. Sacksteder, Foliations and pseudogroups, Amer. J. Math. 87 (1965) 79-102.
  • [38] H. Seifert, Topologie dreidimensionaler gefaserter Raume, Acta Math. 60 (1932) 147-238.
  • [39] V. Solodov, Components of topological foliations, Math. USSR-Sb. 47 (1984) 329-343.
  • [40] W. Thurston, The geometry and topology of 3-manifolds, Lecture notes. Vassar College University of California, Davis, Washington University.