Journal of Differential Geometry
- J. Differential Geom.
- Volume 45, Number 1 (1997), 221-240.
Homological reduction of constrained Poisson algebras
Full-text: Open access
Article information
Source
J. Differential Geom., Volume 45, Number 1 (1997), 221-240.
Dates
First available in Project Euclid: 26 June 2008
Permanent link to this document
https://projecteuclid.org/euclid.jdg/1214459757
Digital Object Identifier
doi:10.4310/jdg/1214459757
Mathematical Reviews number (MathSciNet)
MR1443334
Zentralblatt MATH identifier
0874.58020
Subjects
Primary: 17B55: Homological methods in Lie (super)algebras
Secondary: 17B81: Applications to physics 58F05
Citation
Stasheff, Jim. Homological reduction of constrained Poisson algebras. J. Differential Geom. 45 (1997), no. 1, 221--240. doi:10.4310/jdg/1214459757. https://projecteuclid.org/euclid.jdg/1214459757
References
- [1] J.M. Arms, M. J. Gotay and G. Jennings, (Geometric and algebraic) reduction for singular momentum maps, Adv. Math. 79 (1990) 43-103.Zentralblatt MATH: 0721.53033
Mathematical Reviews (MathSciNet): MR1031826
Digital Object Identifier: doi:10.1016/0001-8708(90)90058-U - [2] I.A. Batalin and E.S. Fradkin, A generalized canonical formalism and quantization of reducible gauge theories, Phys. Lett. 122B (1983) 157-164.Zentralblatt MATH: 0967.81508
Mathematical Reviews (MathSciNet): MR697056
Digital Object Identifier: doi:10.1016/0370-2693(83)90784-0 - [3] I.A. Batalin and G.S. Vilkovisky, Existence theorem for gauge algebra, J. Math. Phys. 26 (1985) 172-184.
- [4] I.A. Batalin and G.S. Vilkovisky, Quantization of gauge theories with linearly dependent generators, Phys. Rev. D 28 (1983) 2567-2582.
- [5] I.A. Batalin and G.S. Vilkovisky, Relativistic S-matrix of dynamical systems with boson and fermion constraints, Phys. Lett. 6 9 B (1977) 309-312.
- [6] C. Becchi, A. Rouet and R. Stora, Renormalization of the abelian Higgs-Kibble model, Comm. Math. Phys. 42 (1975) 127-162.Mathematical Reviews (MathSciNet): MR389060
Digital Object Identifier: doi:10.1007/BF01614158
Project Euclid: euclid.cmp/1103899003 - [7] A. Borel, Sur la cohomologie des espaces fibres principaux et des espaces homogenes de groupes de Lie compacts, Ann. of Math. 57 (1953) 115-207.Zentralblatt MATH: 0052.40001
Mathematical Reviews (MathSciNet): MR51508
Digital Object Identifier: doi:10.2307/1969728
JSTOR: links.jstor.org - [8] A.D. Browning and D. McMullen, The Batalin, Fradkin, Vilkovisky formalism for higher order theories, J. Math. Phys. 28 (1987) 438-444.Zentralblatt MATH: 0625.58034
Mathematical Reviews (MathSciNet): MR872025
Digital Object Identifier: doi:10.1063/1.527679 - [9] C. Chevalley and S. Eilenberg, Cohomology theory of Lie groups and Lie algebras, Trans. Amer. Math. Soc. 63 (1948) 85-124.Zentralblatt MATH: 0031.24803
Mathematical Reviews (MathSciNet): MR24908
Digital Object Identifier: doi:10.2307/1990637
JSTOR: links.jstor.org - [10] P.A.M. Dirac, Lectures on Quantum Mechanics, Belfer Graduate School Monograph Ser. 2, 1964.
- [11] M. Dubois-Violette, Systemes dynamiques constraints: l'approche homologique, Ann. Inst. Fourier (Grenoble) 37 (1987) 45-57.
- [12] E.S. Fradkin and T.E. Fradkina, Quantization of relativistic system with boson and fermion first and second-constraints, Phys. Lett. 7 2 B (1978) 343-348.
- [13] J. Fisch, M. Henneaux, J. Stasheff and C. Teitelboim, Existence, uniqueness and cohomology of the classical BRST change with ghosts of ghosts, Comm. Math. Phys. 120 (1989) 379-407.Zentralblatt MATH: 0685.58054
Mathematical Reviews (MathSciNet): MR981210
Digital Object Identifier: doi:10.1007/BF01225504
Project Euclid: euclid.cmp/1104177840 - [14] E.S. Fradkin and G.S. Vilkovisky, Quantization of relativistic systems with constraints, Phys. Lett. 5 5 B (1975) 224-226.Zentralblatt MATH: 0967.81532
Mathematical Reviews (MathSciNet): MR411451
Digital Object Identifier: doi:10.1016/0370-2693(75)90448-7 - [15] M.J. Gotay, J. Isenberg, J.E. Marsden, R. Montgomery, J. Sniatycki and P. Yasskin, Constraints and momentum mappings in relativistic field theory, Preprint.
- [16] V.K.A.M. Gugenheim, On a perturbation theory for the homology of a loop space, J. Pure Appl. Algebra 25 (1982) 197-205.Zentralblatt MATH: 0487.55003
Mathematical Reviews (MathSciNet): MR662761
Digital Object Identifier: doi:10.1016/0022-4049(82)90036-6 - [17] V.K.A.M. Gugenheim, L. Lambe and J. Stasheff, Algebraic aspects of Chen's twisting cochain, Illinois J. Math. 34 (1990) 485-502.Zentralblatt MATH: 0684.55006
Mathematical Reviews (MathSciNet): MR1046572
Project Euclid: euclid.ijm/1255988274 - [18] V.K.A.M. Gugenheim and J.P. May, On the theory and application of torsion products, Mem. Amer. Math. Soc. 142 (1974).
- [19] V.K.A.M. Gugenheim and J.D. Stasheff, On perturbations and Aoo-structures, Bull. Soc. Math. Belg. 38 (1986) 237-245.
- [20] V. Guillemin and S. Sternberg, Sympletic Techniques in Physics, Cambridge University Press, Cambridge, 1984.
- [21] J. L. Heitsch and S. E. Hurder, Geometry of foliations, J. Differential Geom. 20 (1984) 291-309.Zentralblatt MATH: 0563.57011
Mathematical Reviews (MathSciNet): MR788282
Project Euclid: euclid.jdg/1214439281 - [22] M. Henneaux, Hamiltonian form of the path integral for theories with a gauge freedom, Phys. Rev. 126 (1985) 1-66.Mathematical Reviews (MathSciNet): MR802754
Digital Object Identifier: doi:10.1016/0370-1573(85)90103-6 - [23] M. Henneaux and Claudio Teitelboim, Quantization of gauge systems, Princeton Univ. Press, Princeton, NJ, 1992.
- [24] J. Huebschmann, Poisson cohomology and quantization, J. Reine Angew. Math. 408 (1990) 57-113.Zentralblatt MATH: 0699.53037
Mathematical Reviews (MathSciNet): MR1058984
Digital Object Identifier: doi:10.1515/crll.1990.408.57 - [25] J. Huebschmann, On the quantization of Poisson algebras, Symplectic Geom. Math. Phys., actes du colloque en l'honneur de J.M. Souriau, (P. Donato, C. Duval, J. Elhadad, G. M. Tuynman, eds.), Progr. Math. Vol. 99, Birkhaeuser, Basel, 1991, 204-233.
- [26] J. Huebschmann, Extensions of Lie Rinehart algebras. I. The Chern-Weil construction, Preprint, 1989Zentralblatt MATH: 0946.17008
- [27] J. Huebschmann, Extensions of Lie-Rinehart algebras. II. The spectral sequence and the Weil algebra, Preprint, 1989
- [28] J. Huebschmann, Graded Lie-Rinehart algebras, graded Poisson algebras, and BRST-quantization. I. The finitely generated case, Preprint, 1990.
- [29] J. Huebschmann, Perturbation thoery and small methods for the chains of certain induced fibre spaces, Habilitationsschrift, Universität Heidelberg, 1984.
- [30] J. Huebschmann, The cohomology of F^ q. The additive structure, J. Pure Appl. Algebra 45 (1987) 73-91.Zentralblatt MATH: 0626.55013
Mathematical Reviews (MathSciNet): MR884631
Digital Object Identifier: doi:10.1016/0022-4049(87)90084-3 - [31] J. Huebschmann, Perturbation theory and free resolutions for nilpotent groups of class 2, J. Algebra 126 (1989) 348-399 [32] --, Minimal free multi models for chain algebras, Preprint 1990.Zentralblatt MATH: 0696.55024
Mathematical Reviews (MathSciNet): MR1024997
Digital Object Identifier: doi:10.1016/0021-8693(89)90310-4 - [33] J. Huebschmann and T. Kadeishvili, Small models for chain algebras, Math. Z. 207 (1991) 245-280.Zentralblatt MATH: 0723.57030
Mathematical Reviews (MathSciNet): MR1109665
Digital Object Identifier: doi:10.1007/BF02571387 - [34] J. Herz, Pseudo-algebres de Lie, C R. Acad. Sci. Paris 236 (1953) 1935-1937.
- [35] T. Kimura, Generalized classical BRST and reduction of Poisson manifolds, Comm. Math. Phys.151 (1993) 155-182.Zentralblatt MATH: 0768.58016
Mathematical Reviews (MathSciNet): MR1201658
Digital Object Identifier: doi:10.1007/BF02096751
Project Euclid: euclid.cmp/1104252048 - [36] B. Kostant and S. Sternberg, Symplectic reduction, BRS cohomology and infinitedimensional Clifford algebras, Ann. Physics 176 (1987) 49-113.Zentralblatt MATH: 0642.17003
Mathematical Reviews (MathSciNet): MR893479
Digital Object Identifier: doi:10.1016/0003-4916(87)90178-3 - [37] J.-L. Koszul, Sur un type d'algebres differentielles en rapport avec la transgression, Colloque de Topologie, Bruxelles, 1950, CBRM, Liege. R. Sjamaar and E. Lerman, Stratified symplectic spaces and reduction, Ann. of Math. 134 (1991) 375-422. J.E. Marsden & A. Weinstein, Reduction of symplectic manifolds with symmetry, Rep. Math. Phys. 5 (1974) 121-130. R. Palais, The cohomology of Lie rings, Proc. Sympos. Pure Math. Vol. III, Amer. Math. Soc, 1961, 130-137. D. Quillen, Rational homotopy theory, Ann. of Math. 90 (1969) 205-295. G. Rinehart, Differential forms for general commutative algebras, Trans. Amer. Math. Soc. 108 (1963) 195-222. J. Sniatycki & A. Weinstein, Reduction and quantization for singular momentum mappings, Lett. Math. Phys. 7 (1983) 155-161. J.D. Stasheff, Constrained Hamiltonians: A homological approach, Proc. Winter School on Geom. Phys., Suppl. Rend. Circ. Mat. Palermo, II, 16 (1987) 239-252., Constrained Poisson algebras and strong homotopy representations, Bull. Amer. Math. Soc. (1988) 287-290. D. Sullivan, Infinitesimal computations in topology, Inst. Hautes Etudes Sci. Publ. Math. 47 (1977) 269-331. J. Tate, Homology of Noetherian rings and local rings, Illinois J. Math. 1 (1957) 14-27. I. V. Tyutin, Gauge invariance in field theory and statistical physics in operator formulation (in Russian), Lebedev Phys. Inst., Preprint, 39 (1975). A. Weinstein, Coisotropic calculus and Poisson groupoids, J. Math. Soc. Japan 40 (1988) 705-727., Symplectic V-manifolds, periodic orbits of Hamiltonian systems, and the volume of certain Riemannian manifolds, Comm. Pure Appl. Math. 30 (1977) 265-271.

- You have access to this content.
- You have partial access to this content.
- You do not have access to this content.
More like this
- Goldman algebra, opers and the swapping algebra
Labourie, François, Geometry & Topology, 2018 - The cohomology of Koszul-Vinberg algebra and related topics
Boyom, Michel Nguiffo, African Diaspora Journal of Mathematics, 2009 - A remark on dimension reduction for supremal functionals: the case with convex
domains
Zappale, Elvira, Differential and Integral Equations, 2013
- Goldman algebra, opers and the swapping algebra
Labourie, François, Geometry & Topology, 2018 - The cohomology of Koszul-Vinberg algebra and related topics
Boyom, Michel Nguiffo, African Diaspora Journal of Mathematics, 2009 - A remark on dimension reduction for supremal functionals: the case with convex
domains
Zappale, Elvira, Differential and Integral Equations, 2013 - Generators of the homological Goldman Lie algebra
Kawazumi, Nariya, Kuno, Yusuke, and Toda, Kazuki, Osaka Journal of Mathematics, 2014 - An algebraic approach to virtual fundamental cycles on moduli spaces of pseudo-holomorphic curves
Pardon, John, Geometry & Topology, 2016 - $\Gamma$–homology of algebras over an operad
Hoffbeck, Eric, Algebraic & Geometric Topology, 2010 - The ideals of the homological Goldman Lie algebra
Toda, Kazuki, Kodai Mathematical Journal, 2013 - Homology and central extensions of Leibniz and Lie n-algebras
Casas, José Manuel, Khmaladze, Emzar, Ladra, Manuel, and Van der Linden, Tim, Homology, Homotopy and Applications, 2011 - Poisson structures on $C[X_1,... ,X_n$] associated with rigid Lie algebras
Goze, Nicolas, Journal of Generalized Lie Theory and Applications, 2010 - Higher Order Hochschild (Co)homology of Noncommutative Algebras
Corrigan-Salter, Bruce R., Bulletin of the Belgian Mathematical Society - Simon Stevin, 2018
