Journal of Differential Geometry

Eigenfunction localization in the quantized rigid body

John A. Toth

Full-text: Open access

Article information

Source
J. Differential Geom., Volume 43, Number 4 (1996), 844-858.

Dates
First available in Project Euclid: 26 June 2008

Permanent link to this document
https://projecteuclid.org/euclid.jdg/1214458534

Digital Object Identifier
doi:10.4310/jdg/1214458534

Mathematical Reviews number (MathSciNet)
MR1412687

Zentralblatt MATH identifier
0871.58050

Subjects
Primary: 58G25
Secondary: 33E10: Lamé, Mathieu, and spheroidal wave functions 35J10: Schrödinger operator [See also 35Pxx] 58G18 81Q20: Semiclassical techniques, including WKB and Maslov methods

Citation

Toth, John A. Eigenfunction localization in the quantized rigid body. J. Differential Geom. 43 (1996), no. 4, 844--858. doi:10.4310/jdg/1214458534. https://projecteuclid.org/euclid.jdg/1214458534


Export citation

References

  • [1] V.I. Arnold, Mathematical Methods of Classical Mechanics, 2nd Edition, Springer, Berlin, 1987.
  • [2] Abraham and Marsden, Foundations of Mechanics, 2nd Edition, Addison Wesley, Reading, MA, 1985.
  • [3] Abramowitz and Stegun, Handbook of Mathematical Functions, Dover, New York, 1970.
  • [4] R. Brummelhuis, T. Paul and A. Uribe, Spectral estimates around a critical level, Duke Math. J. 78 (1995) 477-530.
  • [6] Y. Colin de Verdiere and B. Parisse, Equilibre instable en regime semiclassique I: concentration microlocale, Commun. in P.D.E. 19 (1994) 1535-1563.
  • [7] P. Duclos and H. Hogreve, On the semiclassical localization of quantum probability, J. Math. Phys. 34 (1993) 1681-1691.
  • [8] A. Erdelyi, Higher Transcendental Functions, Vol. 3, McGraw-Hill, New York, 1955.
  • [9] A. Erdelyi, Asymptotic Expansions, Dover, 1955.
  • [10] V. Guillemin, Some spectral results on rank one symmetric spaces, Adv. Math. 28 (1978) 129-137.
  • [11] V. Guillemin and S. Sternberg, Geometric Asymptotics, Amer. Math. Soc, Providence, R.I., 1977.
  • [12] V. Guillemin and A. Weinstein, Eigenvalues associated with a closed geodesic, Bull. Amer. Math. Soc. 82 (1976) 92-94.
  • [13] C. Gerard and J. Sjstrand, Semiclassical resonances generated by a closed trajectory of hyperbolic type, Comm. Math. Phys. 108 (1987) 391-422.
  • [14] B. Helffer and; J. Sjstrand, Semiclassical analysis of Harper's equation. Ill, Bull. Soc. Math. France, Memoire No. 39, 1990.
  • [15] C. Marz, Spectral asymptotics for Hill's equation near the potential maximum, Asymptotic Anal. 5 (1992) 221-267.
  • [16] J. Ralston, On the construction of quasimodes associated with stable periodic orbits, Comm. Math. Phys. 51 (1976) 219-242.
  • [17] P. Sarnak, Arithmetic Quantum Chaos, Lecture notes, 1993.
  • [18] J. Sjstrand, Singularites analytiques microlocales, Asterisque 95 (1982).
  • [19] A. Seeger and C. Sogge, Bounds for eigenfunctions of differential operators, Indiana Univ. J. Math. 38 (1989) 669-682.
  • [20] J.A. Toth, Various quantum mechanical aspects of quadratic forms, J. Funct. Anal. 130 (1995) 1-42.
  • [21] J.A. Toth, On a class of spherical harmonics associated with rigid body motion, Math. Res. Lett. 1 (1994) 203-210.
  • [22] E.T. Whittaker and G.N. Watson, A Course of ModernAnalysis, Cambridge Univ. Press, 1963.