Journal of Differential Geometry

Infinitesimal rigidity for hyperbolic actions

Steven Hurder

Full-text: Open access

Article information

Source
J. Differential Geom. Volume 41, Number 3 (1995), 515-527.

Dates
First available in Project Euclid: 26 June 2008

Permanent link to this document
https://projecteuclid.org/euclid.jdg/1214456480

Digital Object Identifier
doi:10.4310/jdg/1214456480

Mathematical Reviews number (MathSciNet)
MR1338481

Zentralblatt MATH identifier
0839.57027

Subjects
Primary: 58F15
Secondary: 22E40: Discrete subgroups of Lie groups [See also 20Hxx, 32Nxx] 57S30: Discontinuous groups of transformations

Citation

Hurder, Steven. Infinitesimal rigidity for hyperbolic actions. J. Differential Geom. 41 (1995), no. 3, 515--527. doi:10.4310/jdg/1214456480. https://projecteuclid.org/euclid.jdg/1214456480


Export citation

References

  • [1] F.Chen and S.Hurder, Local rigidity for hyperbolic actions, in preparation, 1994.
  • [2] V.Guillemin and D.Kazhdan, On the cohomology of certain dynamical systems, Topology 19 (1980) 291-299.
  • [3] S.Hurder, Deformation rigidity for subgroups of SL(n, Z) acting on the n-torus, Bull. Amer. Math. Soc. 23 (1990) 107-113.
  • [4] S.Hurder, Rigidity for Anosov actions of higher rank lattices, Ann. of Math. 135 (1992) 361-410.
  • [5] S.Hurder, Affine Anosov actions, Michigan Math. J. 40 (1993) 561-575.
  • [6] S.Hurder and A. Katok, Differentiability, rigidity and Godbillon- Vey classes for Anoso flows. Inst. Hautes Etudes Sci. Publ. Math. 72 (1990) 5-64.
  • [7] J.-L. Journe, On a regularity problem occurring in connection with anosov diffeomorphisms, Comm. Math. Phys. 106 (1986) 345-352.
  • [8] J.-L. Journe, A regularity lemma for functions of several variables, Reoam Mat. Ibericana. 4 (2) (1988) 187-193.
  • [9] A.Katok and J. Lewis, Local rigidity for certain groups of toral automorphisms, Israel J. Math. 75 (1991) 203-241.
  • [10] J.Lewis, Infinitesimal rigidity for the action of SL(n, Z) on Tn Trans. Amer. Math. Soc. 234 (1991) 421-445.
  • [11] A.Livsic, Homology properties of U-systems, Math. Notes of U.S.S.R. 10 (1971) 758-763.
  • [12] A.Livsic, Cohomology of dynamical systems, Math. USSR Izv. 6 (1972) 1278-1301.
  • [13] R. de la Llave, Smooth conjugacies and SRB measures, Comm. Math. Phys. 150 (1994) 289-320.
  • [14] R. de la Llave, J. Marco and R. Moriyon, Canonical perturbation theory of Anosov systems and regularity results for Livsic cohomology equation, Ann. of Math. 123 (1986) 537-612.
  • [15] A.Lubotzsky and A.Magid, Varieties of representations of finitely generated groups, Mem. Amer. Math. Soc. No. 336, 1985.
  • [16] G. A. Margulis, Discrete Subgroups of Semisimple Lie Groups, Springer, Berlin, 1991.
  • [17] J.J. Millson, Deformations of representations of finitely generated groups, (Geometry of Group Representations, W. Goldman and A. Magid, editors), Contemp. Math. 74 (1988) 237-253.
  • [18] M.Pollicott, Infinitesimal rigidity of group actions with hyperbolic generators, Preprint, 1993.
  • [19] M.Shub, Global Stability of Dynamical Systems, Springer, Berlin, 1987.
  • [20] A.Weil, Remarks on the cohomology of groups, Ann. of Math. 80 (1964) 149-157.
  • [21] R.J. Zimmer, Infinitesimal rigidity for smooth actions of discrete subgroups of Lie groups. J. Differential Geom. 31 (1990) 301-322.