Journal of Differential Geometry

Isoparametric submanifolds and their homogeneous structures

Carlos Olmos

Full-text: Open access

Article information

Source
J. Differential Geom., Volume 38, Number 2 (1993), 225-234.

Dates
First available in Project Euclid: 26 June 2008

Permanent link to this document
https://projecteuclid.org/euclid.jdg/1214454294

Digital Object Identifier
doi:10.4310/jdg/1214454294

Mathematical Reviews number (MathSciNet)
MR1237484

Zentralblatt MATH identifier
0791.53051

Subjects
Primary: 53C42: Immersions (minimal, prescribed curvature, tight, etc.) [See also 49Q05, 49Q10, 53A10, 57R40, 57R42]
Secondary: 53C35: Symmetric spaces [See also 32M15, 57T15]

Citation

Olmos, Carlos. Isoparametric submanifolds and their homogeneous structures. J. Differential Geom. 38 (1993), no. 2, 225--234. doi:10.4310/jdg/1214454294. https://projecteuclid.org/euclid.jdg/1214454294


Export citation

References

  • [1] E. Heintze and C. Olmos, Normal holonomy groups and orbits of s-representations, Indiana University Math. J. 41 (1992) 869-874.
  • [2] E. Heintze, C. Olmos and G. Thorbergsson, Submanifolds with constant principal curvatures and normal holonomy groups, Internat. J. Math. 2 (1991) 167-175.
  • [3] W. Y. Hsiang, R. S. Palais and C. L. Terng, The topology of isoparametric submanifolds, J. Differential Geometry 27 (1988) 423-460.
  • [4] C. Olmos, The normal holonomy group, Proc. Amer. Math. Soc. 110 (1990) 813-818.
  • [5] C. Olmos and C. Sanchez, A geometric characterization of the orbits of s-representations, J. Reine Angew. Math. 420 (1991) 195-202.
  • [6] R. Palais and C. Terng, Critical point theory and submanifold geometry, Lecture Notes in Math., Vol. 1353, Springer, Berlin, 1988.
  • [7] C. L. Terng, Isoparametric submanifolds and their Coxeter groups, J. Differential Geometry 21 (1985) 79-107.
  • [8] C. L. Terng, Proper Fredholm submanifolds of Hubert spaces, J. Differential Geometry 29 (1989) 9-47.
  • [9] G. Thorbergsson, Isoparametric foliations and their buildings, Ann. of Math. (2) 133 (1991) 429-446.
  • [10] F. Tricerri and L. Vanhecke, Homogeneous structures on Riemannian manifolds, London Math. Soc. Lecture Notes, Ser. 83, Cambridge University Press, Cambridge, 1983.