Journal of Differential Geometry

Weil-Petersson volumes

R. C. Penner

Full-text: Open access

Article information

J. Differential Geom., Volume 35, Number 3 (1992), 559-608.

First available in Project Euclid: 26 June 2008

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 32G15: Moduli of Riemann surfaces, Teichmüller theory [See also 14H15, 30Fxx]
Secondary: 14H15: Families, moduli (analytic) [See also 30F10, 32G15] 57N05: Topology of $E^2$ , 2-manifolds


Penner, R. C. Weil-Petersson volumes. J. Differential Geom. 35 (1992), no. 3, 559--608. doi:10.4310/jdg/1214448257.

Export citation


  • [1] D. Bessis, C. Itzykson and J. B. Zuber, Quantum field theory techniques in graphical enumeration, Advances in Appl. Math. 1 (1980) 109-157.
  • [2] J. Harer, The virtual cohomological dimension of the mappingclassgroup of an oriented surface, Invent. Math.84 (1986) 157-176.
  • [3] J. Harer and D. Zagier, The Euler characteristic of the moduli space of curves, Invent. Math. 85 (1986) 457-485.
  • [4] S. Kerckhoff, The Nielsen realization problem, Ann. of Math. (2) 117 (1983) 235-265.
  • [5] M. Kontsevich, Intersection theoryon the space of curve moduli, preprint, 1991.
  • [6] Mathematica (S. Wolfram, ed.), Addison-Wesley, Reading, MA, 1988.
  • [7] E. Miller, The homology of the mapping class group, J. Differential Geometry 24 (1986) 1-14.
  • [8] S.Morita, Characteristic classes of surface bundles, Invent. Math. 90 (1987) 551-577.
  • [9] D. Mumford, Towards an enumerative geometry of the modulis space of curves, Arithmetic and Geometry, Progr. Math., Vol. 36, Birkhauser, Boston, 1983, 271-328.
  • [10] R. C. Penner, The decorated Teichmllerspace of punctured surfaces, Comm. Math. Phys. 113 (1987) 299-339.
  • [11] R. C. Penner, The moduli space of punctured surfaces, Mathematical Aspects of String Theory, Advanced Ser. Math. Phys., Vol. 1, World Scientific, Singapore, 1987, 313-340.
  • [12] R. C. Penner, Perturbative series and the moduli space of Riemann surfaces, J. Differential Geometry 27 (1988) 35-53.
  • [13] R. C. Penner, Calculus on moduli space, Geometry of Group Representations, Contemporary Math., Amer. Math. Soc, Providence, RI, 1988, 277-293.
  • [14] V. Periwal and W. R. Somsky, private communication.
  • [15] S.Shenker, The strength of nonperturbative effects in string theory, Proc.of the Workshop in 1990on Random Surfaces, Quantum Gravity, and Strings, Plenum, to appear.
  • [16] Lightspeed C user's manual, Think Technologies, 1986.
  • [17] E. T. Whittaker and G. N. Watson, A course in modern analysis, Cambridge Univ. Press, Cambridge, 1940.
  • [18] E. Witten, On the structure of the topological phase of two-dimensional gravity, J. Differential Geometry, to appear.
  • [19] E. Witten, Two-dimensional gravity and intersection theory on moduli space, Surveys in Differential Geometry 1 (1991), 243-310.
  • [20] E. Witten, On the Kontsevich model and other models of two-dimensional gravity, Proc. of the Conference on Differential Geometric Methods in Physics (S.Cato and A. Rocha, eds.), Baruch College, 1991, to appear.
  • [21] S. Wolpert, On the symplectic geometry of deformations of a hyperbolic surface, Ann. of Math. (2) 117 (1983) 207-234.
  • [22] S. Wolpert, On the homology of the moduli space of stable curves, Ann. of Math. (2) 118 (1983) 491-523.
  • [23] S. Wolpert, On the Kahler form of the moduli space of once-puncturedtori, Comment. Math. Helv. 58 (1983) 246-256.
  • [24] S. Wolpert, The hyperbolic metric and the geometry of the universal curve, J. Differential Geometry 31 (1990) 417-472.
  • [25] P. Zograf, The Weil-Petersson volume of the moduli space of punctured spheres, Proc. of the Gottingen/Seattle Conference, 1990, Lecture Notes in Math. (R. M. Hain and C. F. Bdigheimer, eds.), Springer, Berlin, to appear.