Journal of Differential Geometry

Geometric quantization of Chern-Simons gauge theory

Scott Axelrod, Steve Della Pietra, and Edward Witten

Full-text: Open access

Article information

J. Differential Geom., Volume 33, Number 3 (1991), 787-902.

First available in Project Euclid: 26 June 2008

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 58F06
Secondary: 14D20: Algebraic moduli problems, moduli of vector bundles {For analytic moduli problems, see 32G13} 32G13: Analytic moduli problems {For algebraic moduli problems, see 14D20, 14D22, 14H10, 14J10} [See also 14H15, 14J15] 58D27: Moduli problems for differential geometric structures 81S10: Geometry and quantization, symplectic methods [See also 53D50] 81T40: Two-dimensional field theories, conformal field theories, etc.


Axelrod, Scott; Della Pietra, Steve; Witten, Edward. Geometric quantization of Chern-Simons gauge theory. J. Differential Geom. 33 (1991), no. 3, 787--902. doi:10.4310/jdg/1214446565.

Export citation


  • [15] P. Griffiths and J. Harris, Principles of algebraic geometry, Wiley, New York, 1978.
  • [16] V. Guillemin and S. Steinberg, Geometric quantization and multiplicities of group representations, Invent. Math. 67 (1982) 515-538.
  • [17] J. Harer, The second homology group of the mapping class group of an orientable surface, Invent. Math. 72 (1982) 221-239.
  • [18] N. Hitchin, Flat connections and geometric quantization, Oxford preprint, 1989.
  • [19] N. Hitchin, Stable bundles and integrable systems, Duke Math. J. 54 (1987) 91-114.
  • [20] V. F. R. Jones, Hecke algebra representations of braid groups and link polynomials, Ann. of Math. (2) 126 (1987) 335-388.
  • [21] V. G. Knizhnik and A. B. Zamolodchikov, Current algebra and Wess-Zumino model in two dimensions, Nuclear Phys. B 247 (1984) 83.
  • [22] B. Kostant, Orbits, symplectic structures, and representation theory, Proc. U.S.-Japan Seminar in Differential Geometry (Kyoto, 1965), Quantization And Unitary Representations, Lecture Notes in Math., Vol. 170, Springer, Berlin, 1970, 87; Line Bun- dles And the Prequantized Schrodinger Equation, Coll. Group Theoretical Methods in Physics, Marseille, 1972, 81.
  • [23] G. Moore and N. Seiberg, Polynomial equations for rational conformal field theories, Phys. Lett. B 212 (1988) 360; Naturality in conformal field theory, Institute for Advanced Study, preprint HEP/88/31 (to appear in Nuclear Phys. B); Classical and quantum conformal field theory, Institute for Advanced Study, preprint HEP/88/39 (to appear in Nuclear Phys. B).
  • [24] D. Mumford and J. Fogarty, Geometric invariant theory, Springer, Berlin, 1982.
  • [25] M. S. Narasimhan and S. Ramanan, Deformations of the moduli space of vector bundles over an algebraic curve, Ann. of Math. (2) 101 (1975) 391-417.
  • [26] A. Pressley and G. Segal, Loop groups, Oxford Univ. Press, Oxford, 1988.
  • [27] D. Quillen, Determinants of Cauchy-Riemann operators over a Riemann surface, Functional Anal. Appl. 19 (1985) 31-34.
  • [28] T. R. Ramadas, I. M. Singer and J. Weitsman, Some comments on Chern-Simons gauge theory, MIT, preprint.
  • [29] D. Ray and I. Singer, R-Torsion and the Laplacian o nRiemannian manifolds, Advances in Math. 7 (1971) 145-210; Analytic torsion of complex manifolds, Ann. of Math. (2) 98 (1973) 154-177.
  • [30] N. Yu. Reshetikhin and V. G. Turaev, Invariants of three-manifolds via link polynomials and quantum groups, Math. Sci. Res. Inst. preprint, 1989.
  • [31] B. Schroer, Operator approach to conformal invariant quantum field theories and related problems, Nuclear Phys. 295 (1988) 586-616; K.-H. Rehren and B. Schroer, Einstein causality andArtin braids, FU preprint, 1987.
  • [32] A. Schwarz, The partition function of degenerate quadratic functional and Ray-Singer invariants, Lett. Math. Phys. 2 (1978) 247-252.
  • [33] A. S. Schwarz, New topological invariants arising in the theory of quantized fields, Abstract, Baku International Topological Conference, 1987.
  • [34] G. Segal, Two-dimensional conformal field theories and modular functors, IXth Internat. Conf. on Math. Physics (Swansea, July, 1988) (B. Simon, A. Truman, and I. M. Davies, eds.), Adam Hilger, 1989, 22-37.
  • [35] C. Simpson, Higgs bundles and local systems, moduli of representations of the fundamental group of a smooth projective variety, preprints.
  • [36] J. Sniatycki, Geometric quantization and quantum mechanics, Springer, New York, 1980.
  • [37] J.-M. Souriau, Quantification geometrique, Comm. Math. Phys. 1 (1966) 374;Structures des systemes dynamiques, Dunod, Paris, 1970.
  • [38] A. Tsuchiya and Y. Kanie, Conformal field theory and solvable lattice models, Advanced Studies Pure Math. 16 (1988) 297; Lett. Math. Phys. 13 (1987) 303-312.
  • [39] A. Tsuchiya, K. Ueno and Y. Yamada, Conformal field theory on universal family of stable curves with gauge symmetries, Max Planck Institute, preprint, 1989.
  • [40] E. Verlinde, Fusion rules and modular transformationsin 2d conformal field theory, Nuclear Phys. B 300 (1988) 360-376.
  • [41] E. Witten, Topological quantum field theory, Comm. Math. Phys. 117 (1988) 353-386.
  • [42] E. Witten, Quantum field theory and the Jones polynomial, Comm. Math. Phys. 121 (1989) 351-399.
  • [43] N. Woodhouse, Geometric quantization, Oxford Univ. Press, Oxford, 1980.