Journal of Differential Geometry
- J. Differential Geom.
- Volume 33, Number 3 (1991), 787-902.
Geometric quantization of Chern-Simons gauge theory
Scott Axelrod, Steve Della Pietra, and Edward Witten
Full-text: Open access
Article information
Source
J. Differential Geom., Volume 33, Number 3 (1991), 787-902.
Dates
First available in Project Euclid: 26 June 2008
Permanent link to this document
https://projecteuclid.org/euclid.jdg/1214446565
Digital Object Identifier
doi:10.4310/jdg/1214446565
Mathematical Reviews number (MathSciNet)
MR1100212
Zentralblatt MATH identifier
0697.53061
Subjects
Primary: 58F06
Secondary: 14D20: Algebraic moduli problems, moduli of vector bundles {For analytic moduli problems, see 32G13} 32G13: Analytic moduli problems {For algebraic moduli problems, see 14D20, 14D22, 14H10, 14J10} [See also 14H15, 14J15] 58D27: Moduli problems for differential geometric structures 81S10: Geometry and quantization, symplectic methods [See also 53D50] 81T40: Two-dimensional field theories, conformal field theories, etc.
Citation
Axelrod, Scott; Della Pietra, Steve; Witten, Edward. Geometric quantization of Chern-Simons gauge theory. J. Differential Geom. 33 (1991), no. 3, 787--902. doi:10.4310/jdg/1214446565. https://projecteuclid.org/euclid.jdg/1214446565
References
- [15] P. Griffiths and J. Harris, Principles of algebraic geometry, Wiley, New York, 1978.
- [16] V. Guillemin and S. Steinberg, Geometric quantization and multiplicities of group representations, Invent. Math. 67 (1982) 515-538.Zentralblatt MATH: 0503.58018
Mathematical Reviews (MathSciNet): MR664118
Digital Object Identifier: doi:10.1007/BF01398934 - [17] J. Harer, The second homology group of the mapping class group of an orientable surface, Invent. Math. 72 (1982) 221-239.Zentralblatt MATH: 0533.57003
Mathematical Reviews (MathSciNet): MR700769
Digital Object Identifier: doi:10.1007/BF01389321 - [18] N. Hitchin, Flat connections and geometric quantization, Oxford preprint, 1989.Zentralblatt MATH: 0718.53021
Mathematical Reviews (MathSciNet): MR1065677
Digital Object Identifier: doi:10.1007/BF02161419
Project Euclid: euclid.cmp/1104200841 - [19] N. Hitchin, Stable bundles and integrable systems, Duke Math. J. 54 (1987) 91-114.Zentralblatt MATH: 0627.14024
Mathematical Reviews (MathSciNet): MR885778
Digital Object Identifier: doi:10.1215/S0012-7094-87-05408-1
Project Euclid: euclid.dmj/1077305506 - [20] V. F. R. Jones, Hecke algebra representations of braid groups and link polynomials, Ann. of Math. (2) 126 (1987) 335-388.Zentralblatt MATH: 0631.57005
Mathematical Reviews (MathSciNet): MR908150
Digital Object Identifier: doi:10.2307/1971403
JSTOR: links.jstor.org - [21] V. G. Knizhnik and A. B. Zamolodchikov, Current algebra and Wess-Zumino model in two dimensions, Nuclear Phys. B 247 (1984) 83.Zentralblatt MATH: 0661.17020
Mathematical Reviews (MathSciNet): MR853258
Digital Object Identifier: doi:10.1016/0550-3213(84)90374-2 - [22] B. Kostant, Orbits, symplectic structures, and representation theory, Proc. U.S.-Japan Seminar in Differential Geometry (Kyoto, 1965), Quantization And Unitary Representations, Lecture Notes in Math., Vol. 170, Springer, Berlin, 1970, 87; Line Bun- dles And the Prequantized Schrodinger Equation, Coll. Group Theoretical Methods in Physics, Marseille, 1972, 81.
- [23] G. Moore and N. Seiberg, Polynomial equations for rational conformal field theories, Phys. Lett. B 212 (1988) 360; Naturality in conformal field theory, Institute for Advanced Study, preprint HEP/88/31 (to appear in Nuclear Phys. B); Classical and quantum conformal field theory, Institute for Advanced Study, preprint HEP/88/39 (to appear in Nuclear Phys. B).Mathematical Reviews (MathSciNet): MR962600
Digital Object Identifier: doi:10.1016/0370-2693(88)91796-0 - [24] D. Mumford and J. Fogarty, Geometric invariant theory, Springer, Berlin, 1982.
- [25] M. S. Narasimhan and S. Ramanan, Deformations of the moduli space of vector bundles over an algebraic curve, Ann. of Math. (2) 101 (1975) 391-417.Zentralblatt MATH: 0314.14004
Mathematical Reviews (MathSciNet): MR384797
Digital Object Identifier: doi:10.2307/1970933
JSTOR: links.jstor.org - [26] A. Pressley and G. Segal, Loop groups, Oxford Univ. Press, Oxford, 1988.Zentralblatt MATH: 0618.22011
- [27] D. Quillen, Determinants of Cauchy-Riemann operators over a Riemann surface, Functional Anal. Appl. 19 (1985) 31-34.
- [28] T. R. Ramadas, I. M. Singer and J. Weitsman, Some comments on Chern-Simons gauge theory, MIT, preprint.Zentralblatt MATH: 0686.53066
Mathematical Reviews (MathSciNet): MR1027504
Digital Object Identifier: doi:10.1007/BF02125132
Project Euclid: euclid.cmp/1104179858 - [29] D. Ray and I. Singer, R-Torsion and the Laplacian o nRiemannian manifolds, Advances in Math. 7 (1971) 145-210; Analytic torsion of complex manifolds, Ann. of Math. (2) 98 (1973) 154-177.Zentralblatt MATH: 0239.58014
Mathematical Reviews (MathSciNet): MR383463
Digital Object Identifier: doi:10.2307/1970909
JSTOR: links.jstor.org - [30] N. Yu. Reshetikhin and V. G. Turaev, Invariants of three-manifolds via link polynomials and quantum groups, Math. Sci. Res. Inst. preprint, 1989.Zentralblatt MATH: 0725.57007
- [31] B. Schroer, Operator approach to conformal invariant quantum field theories and related problems, Nuclear Phys. 295 (1988) 586-616; K.-H. Rehren and B. Schroer, Einstein causality andArtin braids, FU preprint, 1987.Mathematical Reviews (MathSciNet): MR953491
Digital Object Identifier: doi:10.1016/0550-3213(88)90537-8 - [32] A. Schwarz, The partition function of degenerate quadratic functional and Ray-Singer invariants, Lett. Math. Phys. 2 (1978) 247-252.Zentralblatt MATH: 0383.70017
Mathematical Reviews (MathSciNet): MR676337
Digital Object Identifier: doi:10.1007/BF00406412 - [33] A. S. Schwarz, New topological invariants arising in the theory of quantized fields, Abstract, Baku International Topological Conference, 1987.
- [34] G. Segal, Two-dimensional conformal field theories and modular functors, IXth Internat. Conf. on Math. Physics (Swansea, July, 1988) (B. Simon, A. Truman, and I. M. Davies, eds.), Adam Hilger, 1989, 22-37.Mathematical Reviews (MathSciNet): MR1033753
- [35] C. Simpson, Higgs bundles and local systems, moduli of representations of the fundamental group of a smooth projective variety, preprints.
- [36] J. Sniatycki, Geometric quantization and quantum mechanics, Springer, New York, 1980.
- [37] J.-M. Souriau, Quantification geometrique, Comm. Math. Phys. 1 (1966) 374;Structures des systemes dynamiques, Dunod, Paris, 1970.Zentralblatt MATH: 0698.58027
Mathematical Reviews (MathSciNet): MR207332
Project Euclid: euclid.cmp/1103758996 - [38] A. Tsuchiya and Y. Kanie, Conformal field theory and solvable lattice models, Advanced Studies Pure Math. 16 (1988) 297; Lett. Math. Phys. 13 (1987) 303-312.Zentralblatt MATH: 0631.17010
Mathematical Reviews (MathSciNet): MR895293
Digital Object Identifier: doi:10.1007/BF00401159 - [39] A. Tsuchiya, K. Ueno and Y. Yamada, Conformal field theory on universal family of stable curves with gauge symmetries, Max Planck Institute, preprint, 1989.
- [40] E. Verlinde, Fusion rules and modular transformationsin 2d conformal field theory, Nuclear Phys. B 300 (1988) 360-376.Mathematical Reviews (MathSciNet): MR954762
Digital Object Identifier: doi:10.1016/0550-3213(88)90603-7 - [41] E. Witten, Topological quantum field theory, Comm. Math. Phys. 117 (1988) 353-386.Zentralblatt MATH: 0656.53078
Mathematical Reviews (MathSciNet): MR953828
Digital Object Identifier: doi:10.1007/BF01223371
Project Euclid: euclid.cmp/1104161738 - [42] E. Witten, Quantum field theory and the Jones polynomial, Comm. Math. Phys. 121 (1989) 351-399.Zentralblatt MATH: 0667.57005
Mathematical Reviews (MathSciNet): MR990772
Digital Object Identifier: doi:10.1007/BF01217730
Project Euclid: euclid.cmp/1104178138 - [43] N. Woodhouse, Geometric quantization, Oxford Univ. Press, Oxford, 1980.

- You have access to this content.
- You have partial access to this content.
- You do not have access to this content.
More like this
- Instanton Counting and Chern-Simons Theory
Iqbal, Amer and Kashani-Poor, Amir-Kian, Advances in Theoretical and Mathematical Physics, 2003 - Chern-Simons and String Theory
Marathe, Kishore, Journal of Geometry and Symmetry in Physics, 2006 - Non-Abelian localization for Chern-Simons theory
Beasley, Chris and Witten, Edward, Journal of Differential Geometry, 2005
- Instanton Counting and Chern-Simons Theory
Iqbal, Amer and Kashani-Poor, Amir-Kian, Advances in Theoretical and Mathematical Physics, 2003 - Chern-Simons and String Theory
Marathe, Kishore, Journal of Geometry and Symmetry in Physics, 2006 - Non-Abelian localization for Chern-Simons theory
Beasley, Chris and Witten, Edward, Journal of Differential Geometry, 2005 - One-dimensional Chern–Simons theory and the $\hat{A}$ genus
Gwilliam, Owen and Grady, Ryan, Algebraic & Geometric Topology, 2014 - Localization for Wilson Loops in Chern–Simons Theory
Beasely, Chris, Advances in Theoretical and Mathematical Physics, 2013 - Geometrical Approaches to the Quantization of Gauge Theories
Bucker, Beatrice, , 2004 - Modern Approaches to the Quantization of Gauge Theories
Bucker, Beatrice, , 2003 - Quantum Riemann surfaces in Chern-Simons theory
Dimofte, Tudor, Advances in Theoretical and Mathematical Physics, 2013 - The quantisation of Poisson structures arising in
Chern-Simons theory with gauge group $G \ltimes \mathfrak{g}^*$
Meusburger, C. and Schroers, B. J., Advances in Theoretical and Mathematical Physics, 2003 - Hyperkähler prequantization of the Hitchin system and
Chern-Simons theory with complex gauge group
Dey, Rukmini, Advances in Theoretical and Mathematical Physics, 2007
