Journal of Differential Geometry

Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations

Yun Gang Chen, Yoshikazu Giga, and Shun'ichi Goto

Full-text: Open access

Article information

Source
J. Differential Geom., Volume 33, Number 3 (1991), 749-786.

Dates
First available in Project Euclid: 26 June 2008

Permanent link to this document
https://projecteuclid.org/euclid.jdg/1214446564

Digital Object Identifier
doi:10.4310/jdg/1214446564

Mathematical Reviews number (MathSciNet)
MR1100211

Zentralblatt MATH identifier
0696.35087

Subjects
Primary: 35K65: Degenerate parabolic equations
Secondary: 35D05 53C21: Methods of Riemannian geometry, including PDE methods; curvature restrictions [See also 58J60] 58E12: Applications to minimal surfaces (problems in two independent variables) [See also 49Q05]

Citation

Chen, Yun Gang; Giga, Yoshikazu; Goto, Shun'ichi. Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations. J. Differential Geom. 33 (1991), no. 3, 749--786. doi:10.4310/jdg/1214446564. https://projecteuclid.org/euclid.jdg/1214446564


Export citation

References

  • [1] U. Abresch and J. Langer, The normalized curve shortening flow and homothetic solutions, J. Differential Geometry 23 (1986) 175-196.
  • [2] A. D. Alexandroff, Almost everywhere existence of the second differential of a convex function and some properties of convex surfacesconnected with it, Leningrad Gos. Univ. Uchen. Zap. Ser. Mat. Nauk 6 (1939) 3-35. (Russian)
  • [3] S. Angenent, Parabolic equations for curveson surfaces.II: Intersections, blow up and generalized solutions, CMS-Technical Summary Report #89-24, Univ. of Wisconsin.
  • [4] K. A. Brakke, The motion of a surface by its mean curvature, Princeton Univ. Press, Princeton, NJ, 1978.
  • [5] Y.-G. Chen, Y. Giga and S. Goto, Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations, Proc. Japan Acad. Ser. A 65 (1989) 207-210.
  • [6] M. G. Crandall, Semidifferentials, quadratic forms and fully nonlinear elliptic equations of second order, Ann. Inst. H. Poincare Anal. Non Lineare 6 (1989) 419-435.
  • [7] P. Dupuis and H. Ishii, On oblique derivative problems for fully nonlinear second order elliptic PDE's on nonsmoothdomain, preprint.
  • [8] C. Epstein and M. Weinstein, A stable manifold theorem for the curveshortening equation, Comm. Pure Appl. Math. 40 (1987) 119-139.
  • [9] L. C. Evans and J. Spruck, Motion of level sets by mean curvature., I, this issue, pp. 635-681.
  • [10] M. Gage and R. Hamilton, The heat equation shrinking of convex plane curves, J. Differential Geometry 23 (1986) 69-96.
  • [11] E. De Giorgi, Convergence problems for functionals and operators, Proc. Internat. Meeting on Recent Methods in Nonlinear Analysis (E. De Georgi et al., eds.), Pitagora Editrice, Bologna, 1979, 131-188.
  • [12] M. Grayson, The heat equation shrinks embedded plane curves to round points, J. Differential Geometry 26 (1987) 285-314.
  • [13] M. Gurtin, Towards a nonequilibrium thermodynamics of two-phase materials, Arch. Rational Mech. Anal. 100 (1988) 275-312.
  • [14] G. Huisken, Flow by mean curvature of convex surfaces into spheres, J. Differential Geometry 20 (1984) 237-266.
  • [15] G. Huisken, Asymptotic behavior for singularities of the mean curvature flow, J. Differential Geometry 31 (1990) 285-299.
  • [16] H. Ishii, Perron's methodfor Hamilton-Jacobi equations, Duke Math. J. 55 (1987) 369-384.
  • [17] H. Ishii, On uniqueness and existence of viscosity solutions of fully nonlinear second order elliptic PDE's, Comm. Pure Appl. Math. 42 (1989) 15-45.
  • [18] H. Ishii and P. L. Lions, Viscosity solutions of fully nonlinear second-order ellipticpartial differential equations, J. Differential Equations 83 (1990) 26-78.
  • [19] R. Jensen, The maximum principle for viscosity solutions of fully nonlinear second-order partial differential equations, Arch. Rational Mech. Anal. 101 (1988) 1-27.
  • [20] R. Jensen, P. L. Lions and P. E. Souganidis, A uniqueness result for viscosity solutions of second orderfully nonlinear partial differential equations, Proc. Amer. Math. Soc.102 (1988) 975-978.
  • [21] J. M. Lasry and P. L. Lions, A remark on regularization in Hilbert spaces, Israel J. Math. 55 (1986) 257-266.
  • [22] P. L. Lions, Optimal control of diffusion processes and Hamilton-Jacobi-Bellman equations, Part II: Viscosity solutions and uniqueness, Comm. Partial Differential Equa- tions 8 (1983) 1229-1276.
  • [23] P. de Mottoni and M. Schatzman, Evolution gometric d'interfaces, C.R. Acad. Sci.Paris Ser. I Math. 309 (1989) 453-458.
  • [24] D. Nunziante, Uniqueness of viscosity solutions of fully nonlinear second order parabolic equations with noncontinuous time-dependence, Differential Integral Equations 3 (1990) 77-91.
  • [25] S. Osher and J. A. Sethian, Fronts propagating with curvature dependent speed: Algorithms based on Hamilton-Jacobi formulations, J. Computational Phys. 79 (1988) 12-49.
  • [26] J. A. Sethian, Numerical algorithms for propagating interfaces: Hamilton-Jacobi equations and conservation laws, J. Differential Geometry 31 (1990) 131-161.