Journal of Differential Geometry

Some regularity theorems for Carnot-Carathéodory metrics

Ursula Hamenstädt

Full-text: Open access

Article information

Source
J. Differential Geom., Volume 32, Number 3 (1990), 819-850.

Dates
First available in Project Euclid: 26 June 2008

Permanent link to this document
https://projecteuclid.org/euclid.jdg/1214445536

Digital Object Identifier
doi:10.4310/jdg/1214445536

Mathematical Reviews number (MathSciNet)
MR1078163

Zentralblatt MATH identifier
0687.53041

Subjects
Primary: 58E11: Critical metrics
Secondary: 53C20: Global Riemannian geometry, including pinching [See also 31C12, 58B20]

Citation

Hamenstädt, Ursula. Some regularity theorems for Carnot-Carathéodory metrics. J. Differential Geom. 32 (1990), no. 3, 819--850. doi:10.4310/jdg/1214445536. https://projecteuclid.org/euclid.jdg/1214445536


Export citation

References

  • [1] C. Bar, Carnot-Coratheodory-Metriken, Diplomarbeit, Bonn, 1988.
  • [2] J.Cheeger and D. Ebin, Comparison theorems in Riemannian geometry, North-Holland, Amsterdam, 1975.
  • [3] H. Federer, Geometric measure theory, Grundlehren 153, Springer, New York, 1969.
  • [4] P. Flaschel and W. Klingenberg, Riemannsche Hilbertmannigfaltigkeiten, periodische Geodtische, Lecture Notes in Math., Vol. 282, Springer, New York, 1972.
  • [5] R. W. Goodman, Nilpotent Lie groups, Lecture Notes in Math., Vol. 562, Springer, New York, 1976.
  • [6] M. Gromov, J. Lafontaine and P. Pansu, Structuremetriques pour les varietes Riemanniennes, Paris, Cedic, 1981.
  • [7] U.Hamenstadt, Zur Theorievon Carnot-Caratheodory Metriken und ihren Anwendungen, Bonner Math. Schriften, Univ. Bonn, No. 180, 1987.
  • [8] S. Helgason, Differential geometry, Lie groups, and symmetric spaces, Academic Press, New York, 1962.
  • [9] S. Koboyashi and K. Nomizu, Foundations of differential geometry, Vol. I, Interscience, New York, 1963.
  • [10] A. Koranyi, Geometric aspects of analysis on the Heisenberggroup, Topics in Modern Harmonic Analysis, Vol. II (Proc. Sem. Torino and Milano, May-June 1982), 209-258.
  • [11] G. Metivier, Fonctionspectrale et valeurspropres d'operateursnon elliptiques, Comm. Partial Differential Equations 1 (1976) 467-519.
  • [12] J. Mitchell, On Carnot-Caratheodory metrics, J. Differential Geometry 21 (1985) 35-45.
  • [13] P. Pansu, Quasi isometries des varietes a courbure negative, Thesis Ecole Polytechnique, Paris, 1987.
  • [14] L. P. Rothschild and E. M. Stein, Hypoelliptic differential operators and nilpotent groups, Acta. Math. 155 (1985) 103-147.
  • [15] W. Rudin, Functionalanalysis, McGraw-Hill, New York, 1973.
  • [16] M. Spivak, A comprehensive introduction to differential geometry. II, Publish or Perish, Berkeley, 1979.
  • [17] R. S. Strichartz, Sub-Riemanniangeometry, J. Differential Geometry 24 (1986) 221-263.
  • [18] S. M. Webster, Pseudo-hermitian structureon a real hypersurface, J. Differential Geometry 13 (1978) 25-41.
  • [19] E. N. Wilson, Isometry groups on homogeneous nilmanifolds, Geometriae Dedicata 12 (1982) 337-346.