Journal of Differential Geometry

$L\sp {n/2}$-curvature pinching

L. Zhiyong Gao

Full-text: Open access

Article information

Source
J. Differential Geom., Volume 32, Number 3 (1990), 713-774.

Dates
First available in Project Euclid: 26 June 2008

Permanent link to this document
https://projecteuclid.org/euclid.jdg/1214445534

Digital Object Identifier
doi:10.4310/jdg/1214445534

Mathematical Reviews number (MathSciNet)
MR1078161

Zentralblatt MATH identifier
0721.53039

Subjects
Primary: 53C23: Global geometric and topological methods (à la Gromov); differential geometric analysis on metric spaces
Secondary: 53C20: Global Riemannian geometry, including pinching [See also 31C12, 58B20]

Citation

Gao, L. Zhiyong. $L\sp {n/2}$-curvature pinching. J. Differential Geom. 32 (1990), no. 3, 713--774. doi:10.4310/jdg/1214445534. https://projecteuclid.org/euclid.jdg/1214445534


Export citation

References

  • [1] J. Bemelmanns, M. Min-Oo and E. Ruh, Smoothing Riemannian metrics, Math. Z. 188 (1984) 69-74.
  • [2] M. Berger, Les varietes riemanniennes (4)-pincees, Ann. Scuola. Norm. Sup. Pisa Sci. Fis. Mat. (3) 14 (1960) 160-170.
  • [3] R. Bishop and R. Crittenden, Geometry of manifolds, Academic Press, New York, 1964.
  • [4] J. Cheeger and D. G. Ebin, Comparisontheorems in Riemannian geometry, Math. Library, Vol. 9, North-Holland, Amsterdam, 1975.
  • [5] J. Cheeger, M. Gromov,and M. Taylor, Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds, J. Differential Geometry 17 (1982) 15-54.
  • [6] S. Y. Cheng, P. Li, and S. T. Yau, On the upper estimate of the heat kernel of a complete Riemannian manifold, Amer. J. Math. 103 (1981) 1021-1063.
  • [7] C. B. Croke, Some isoperimetric inequalities and eigenvalue estimates, Ann. Sci. Ecole Norm. Sup. (4) 13 (1980) 419-435.
  • [8] H. Federer, Geometric measure theory, Springer, Berlin, 1969.
  • [9] M. Freedman, The topology of four-dimensional manifolds, J. Differential Geometry 17 (1982) 357-454.
  • [10] L. Z. Gao, Einstein metrics, J. Differential Geometry 31 (1990).
  • [11] R. Greene and H. Wu, Lipschitz convergence of Riemannian manifolds, Pacific J. Math., to appear.
  • [12] D. Gromoll, Differenzierbare Strukturen and Metriken positiverKrummung aufSpharen, Math. Ann. 164 (1966) 353-371.
  • [13] D. Gromoll, W. Klingenberg and W. Meyer, Riemannsahe Geometrieim Grossen, 2nd ed., Lecture Notes in Math., no. 55, Springer, Berlin, 1975.
  • [14] M. Gromov, Manifolds of negative curvature, J. Differential Geometry 13 (1978) 223-230.
  • [15] M. Gromov, Groupsof polynomial growth and expanding maps, Inst. Hautes Etudes Sci., 1986.
  • [16] M. Gromov, J. Lafontaine and P. Pansu, Structure metrique pour les varietes Riemanniennes, Cedic/Fernand, Nathan, 1981.
  • [17] M. Gromov and W. Thurston, Pinching constants for hyperbolic manifolds, Invent. Math. 89 (1987) 1-12.
  • [18] K. Grove and P. Peterson, Bounding homotopy types by geometry, Ann. of Math. 128 (1988) 195-206.
  • [19] R. Hamilton, Three manifolds with positive Ricci curvature, J. Differential Geometry 17 (1982) 255-306.
  • [20] G. Huisken, Ricci deformation of the metric on a Riemannian manifold, J. Differential Geometry 21 (1985) 47-62.
  • [21] M. A. Kervaire and J. W. Milnor, Groups of homotopy sphere. I, Ann. of Math. (2) 77 (1963) 504-537.
  • [22] K. Klingenberg, UberRiemannsche Mannigfaltigkeiten mit positiver Krummung, Comment. Math. Helv. 35 (1961) 47-54.
  • [23] S. Kobayashi and K. Nomizu, Foundations of differential geometry, Vol. I, Wiley, New York, 1963.
  • [24] P. Li, On Sobolev constant and the p-spectrum of a compact Riemannian manifold, Ann. Sci. Ecole Norm. Sup. (4) 13 (1980) 451-469.
  • [25] S. Peters, Convergence of Riemannian manifolds, Compositio Math. 62 (1987) 3-16.
  • [26] H. E. Rauch, A contribution to differential geometry in the large, Ann. of Math. (2) 54 (1951) 38-55.
  • [27] E. A Ruh, Curvature and differential structures on spheres, Comment. Math. Helv. 46 (1971) 127-136.
  • [28] E. A Ruh, Riemannian manifolds with bounded curvature ratios, J. Differential Geometry 17 (1982) 643-653.
  • [29] S. Smale, Generalized Poincare conjecture in dimensions greater thanfour, Ann. of Math. (2) 74 (1961) 391-406.