Journal of Differential Geometry

Einstein metrics

L. Zhiyong Gao

Full-text: Open access

Article information

Source
J. Differential Geom., Volume 32, Number 1 (1990), 155-183.

Dates
First available in Project Euclid: 26 June 2008

Permanent link to this document
https://projecteuclid.org/euclid.jdg/1214445042

Digital Object Identifier
doi:10.4310/jdg/1214445042

Mathematical Reviews number (MathSciNet)
MR1064870

Zentralblatt MATH identifier
0719.53024

Subjects
Primary: 58D27: Moduli problems for differential geometric structures
Secondary: 53C25: Special Riemannian manifolds (Einstein, Sasakian, etc.) 58D17: Manifolds of metrics (esp. Riemannian)

Citation

Gao, L. Zhiyong. Einstein metrics. J. Differential Geom. 32 (1990), no. 1, 155--183. doi:10.4310/jdg/1214445042. https://projecteuclid.org/euclid.jdg/1214445042


Export citation

References

  • [1] J. W. Alexander, The combinatorial theory of complexes, Ann. of Math. (2) 31 (1930) 292-320.
  • [2] N. F. Atiyah, N. J. Hitchin and I. M. Singer, Self-dualityinfour-dimensional Riemannian geometry, Proc. Roy. Soc. London Ser. A 362 (1978) 425-461.
  • [3] M. Berger, Une borne inferieure pour le volume d'une variete riemannienne en function du rayon d'injective, Ann. Inst. Fourier (Grenoble) 30 (1980) 259-265.
  • [4] M. Berger and D. Ebin, Some decompositions of the space of symmetric tensors on a Riemannian manifold, J. Differential Geometry 3 (1969) 379-392.
  • [5] A. Besse, Geometric Riemannienne en Dimension 4, CEDIC, Paris, 1981.
  • [6] A. Besse, Einstein manifolds, Springer, New York, 1986.
  • [7] R. L. Bishop and R. J. Crittenden, Geometry of manifolds, Academic Press, New York, 1964.
  • [8] P. Buser and H. Karcher, Gromov's almost flat manifolds, Asterisque, No.81, Soc. Math. France, Paris, 1981.
  • [9] C. B. Croke, Some isoperimetric inequalities and eigenvalue estimates, Ann. Sci. Ecole Norm. Sup., Paris 13 (1980) 419-435.
  • [10] P. Ehrlich, Metric deformations of curvature, Geometriae Dedicata 5 (1976) 1-23.
  • [11] H. Federer, Geometric measure theory, Springer, Berlin, 1969.
  • [12] D. S. Freed and K. K. Uhlenbeck, Instantonprint Einstein s andfour-manifolds, Springer, Berlin, 1984.
  • [13] L. Z. Gao, Ln ' -curvature pinching, preprint.
  • [14] D. Gilbarg and N. Trudinger, Ellipticpartial differential equations ofsecond order, Springer, Berlin, 1984.
  • [15] R. E. Greene and H. Wu, Lipschitz convergence ofriemannian manifolds, preprint.
  • [16] M. Gromov, Structures metriquee pour les varietesRiemanniennes, CEDIC, Paris, 1981.
  • [17] R. S. Hamilton, Three-manifolds with positive ricci curvature, J. Differential Geometry 17 (1982) 255-306.
  • [18] S. Ilias, Constantes explicitespour ies inegalitesde sobolev surles varieties riemanniennes compactes, Ann. Inst. Fourier (Grenoble) 33 (1983) 151-165.
  • [19] J. Jost, Harmonic mapping between Riemannian manifolds, Australian National University, 1986.
  • [20] H. Karcher, Riemannian center of mass and mollifiersmoothing, Comm. Pure Appl. Math. 30 (1977) 509-541.
  • [21] S. Kobayashi and K. Nomizu, Foundationsof differential geometry, Vol. I, Wiley, New York, 1963.
  • [22] J. Munkres, Topology, Prentice-Hall, Englewood Cliffs, NJ, 1975.
  • [23] S. Peters, Convergence of Riemannian manifolds, Compositio Math. 62 (1987) 3-16.
  • [24] J. Sacks and K. K. Uhlenbeck, The existence of minimal immersions of 2-spheres, Ann. of Math. (2) 113 (1981) 1-24.
  • [25] J. Serrin, Local behavior of solutions of quasi-linearequations, Acta Math. 3 (1964) 247-302.
  • [26] P. Smith and D. Yang, Removing point singularities of Riemannian metrics, preprint.
  • [27] E. H. Spanier, Algebraic topology, Springer, Berlin, 1966.
  • [28] K. K. Uhlenbeck, Removable singularitiesin Yang-Millsfields, Comm. Math. Phys. 83 (1982) 11-29.