Journal of Differential Geometry

Morse theory for Lagrangian intersections

Andreas Floer

Full-text: Open access

Article information

Source
J. Differential Geom., Volume 28, Number 3 (1988), 513-547.

Dates
First available in Project Euclid: 26 June 2008

Permanent link to this document
https://projecteuclid.org/euclid.jdg/1214442477

Digital Object Identifier
doi:10.4310/jdg/1214442477

Mathematical Reviews number (MathSciNet)
MR965228

Zentralblatt MATH identifier
0674.57027

Subjects
Primary: 58F05
Secondary: 35J65: Nonlinear boundary value problems for linear elliptic equations 58E05: Abstract critical point theory (Morse theory, Ljusternik-Schnirelman (Lyusternik-Shnirel m an) theory, etc.)

Citation

Floer, Andreas. Morse theory for Lagrangian intersections. J. Differential Geom. 28 (1988), no. 3, 513--547. doi:10.4310/jdg/1214442477. https://projecteuclid.org/euclid.jdg/1214442477


Export citation

References

  • [1] V. I. Arnold, Sur une propriete topologique des applications globalement canoniques de la mecanique classique, C. R. Acad. Sci. Paris 261 (1965) 3719-3722.
  • [2] V. I. Arnold, Mathematical methods of classical mechanics (Appendix 9), Springer, Berlin, 1978.
  • [3] M. Chaperon, A theorem on Lagrangian intersections, preprint, 1983.
  • [4] C. C. Conley, Isolated invariant sets and the Morse index, CBMS Regional Conf. Ser. in Math., No. 38, Amer. Math. Soc, Providence, RI, 1978.
  • [5] C. C. Conley and E. Zehnder, The Birkhoff-Lewis fixed point theorem and a conjecture of V. I. Arnold, Invent. Math. 73 (1983) 33-49.
  • [6] A. Floer, Proof of the Arnold conjecture for surfaces and generalizations to certain Kahler manifolds, Duke Math. J. 53 (1986) 1-32.
  • [7] A. Floer, The unregularized gradient flow of the symplectic action, to appear in Comm. Pure Appl. Math. (1988).
  • [8] A. Floer, A relative Morse index for the symplectic action, to appear in Comm. Pure Appl. Math. (1988).
  • [9] A. Floer, Witten's complex for arbitrary coefficients and an application to Lagrangian intersections, to appear in J. Differential Geometry.
  • [10] A. Floer, Construction of monopoles on asymptotically flat manifolds, to appear.
  • [11] B. Fortune, A symplectic fixed point theorem for CPn, Invent. Math. 81 (1985) 29-46.
  • [12] M. Gromov, Pseudoholomorphic curves in symplectic manifolds, Invent. Math. 82 (1985) 307-347.
  • [13] H. Hofer, Lagrangian embeddings and critical point theory, Ann. Inst. H. Poincare, Anal. Non Linaire 2 (1985) 407-462.
  • [14] F. Laudenbach and J. C. Sikorav, Persistence d'intersection avec la section nulle au cours d'une isotopie hamiltonienne dans un fibre cotangent, preprint, 1985.
  • [15] J. Milnor, Morse theory, Annals of Math. Studies, No. 51, Princeton University Press, Princeton, NJ, 1963.
  • [16] J. Milnor, Morse theory, Lectures on the H-cobordism theorem, Math. Notes, Princeton University Press, Princeton, NJ, 1965.
  • [17] R. S. Palais, Morse theory on Hubert manifolds, Topology 2 (1963) 299-340.
  • [18] R. S. Palais, Foundations of global analysis, Benjamin, New York, 1968.
  • [19] J. C. Sikorav, Points fixes d'un symplectomorphisme homologue a identite, J. Differential Geometry 22 (1982) 49-79.
  • [20] E. Spanier, Algebraic topology, McGraw-Hill, New York, 1966.
  • [21] C. H. Taubes, Self-dual Yang Mills connections on non-self-dual 4-manifolds, J. Differential Geometlry 17 (1982) 139-170.
  • [22] C. H. Taubes, Gauge theory on asymptotically periodic 4-manifolds, preprint.
  • [23] C. Viterbo, Intersections de sous-varietes lagrangiennes fonctionelles d'action et indice des systemes hamiltoniens, preprint, 1986.
  • [24] A. Weinstein, Symplectic manifolds and their Lagrangian submanifolds, Advances in Math. (1971) 329-346.
  • [25] A. Weinstein, Removing intersections of Lagrangian immersions, Illinois J. Math. 27 (1983) 475- 500.
  • [26] A. Weinstein, On extending the Conley Zehnder fixed point theorem to other manifolds, Proc. Sympos. Pure Math., No. 45, Amer. Math. Soc, Providence, RI, 1986.
  • [27] E. Witten, Supersymmetry and Morse theory, J. Differential Geometry 17 (1982) 661- 692.