Journal of Differential Geometry
- J. Differential Geom.
- Volume 28, Number 3 (1988), 513-547.
Morse theory for Lagrangian intersections
Full-text: Open access
Article information
Source
J. Differential Geom., Volume 28, Number 3 (1988), 513-547.
Dates
First available in Project Euclid: 26 June 2008
Permanent link to this document
https://projecteuclid.org/euclid.jdg/1214442477
Digital Object Identifier
doi:10.4310/jdg/1214442477
Mathematical Reviews number (MathSciNet)
MR965228
Zentralblatt MATH identifier
0674.57027
Subjects
Primary: 58F05
Secondary: 35J65: Nonlinear boundary value problems for linear elliptic equations 58E05: Abstract critical point theory (Morse theory, Ljusternik-Schnirelman (Lyusternik-Shnirel m an) theory, etc.)
Citation
Floer, Andreas. Morse theory for Lagrangian intersections. J. Differential Geom. 28 (1988), no. 3, 513--547. doi:10.4310/jdg/1214442477. https://projecteuclid.org/euclid.jdg/1214442477
References
- [1] V. I. Arnold, Sur une propriete topologique des applications globalement canoniques de la mecanique classique, C. R. Acad. Sci. Paris 261 (1965) 3719-3722.
- [2] V. I. Arnold, Mathematical methods of classical mechanics (Appendix 9), Springer, Berlin, 1978.
- [3] M. Chaperon, A theorem on Lagrangian intersections, preprint, 1983.
- [4] C. C. Conley, Isolated invariant sets and the Morse index, CBMS Regional Conf. Ser. in Math., No. 38, Amer. Math. Soc, Providence, RI, 1978.
- [5] C. C. Conley and E. Zehnder, The Birkhoff-Lewis fixed point theorem and a conjecture of V. I. Arnold, Invent. Math. 73 (1983) 33-49.Zentralblatt MATH: 0516.58017
Mathematical Reviews (MathSciNet): MR707347
Digital Object Identifier: doi:10.1007/BF01393824 - [6] A. Floer, Proof of the Arnold conjecture for surfaces and generalizations to certain Kahler manifolds, Duke Math. J. 53 (1986) 1-32.Zentralblatt MATH: 0607.58016
Mathematical Reviews (MathSciNet): MR835793
Digital Object Identifier: doi:10.1215/S0012-7094-86-05301-9
Project Euclid: euclid.dmj/1077304877 - [7] A. Floer, The unregularized gradient flow of the symplectic action, to appear in Comm. Pure Appl. Math. (1988).Zentralblatt MATH: 0633.53058
Mathematical Reviews (MathSciNet): MR948771
Digital Object Identifier: doi:10.1002/cpa.3160410603 - [8] A. Floer, A relative Morse index for the symplectic action, to appear in Comm. Pure Appl. Math. (1988).Zentralblatt MATH: 0633.58009
Mathematical Reviews (MathSciNet): MR933228
Digital Object Identifier: doi:10.1002/cpa.3160410402 - [9] A. Floer, Witten's complex for arbitrary coefficients and an application to Lagrangian intersections, to appear in J. Differential Geometry.
- [10] A. Floer, Construction of monopoles on asymptotically flat manifolds, to appear.
- [11] B. Fortune, A symplectic fixed point theorem for CPn, Invent. Math. 81 (1985) 29-46.Zentralblatt MATH: 0547.58015
Mathematical Reviews (MathSciNet): MR796189
Digital Object Identifier: doi:10.1007/BF01388770 - [12] M. Gromov, Pseudoholomorphic curves in symplectic manifolds, Invent. Math. 82 (1985) 307-347.Zentralblatt MATH: 0592.53025
Mathematical Reviews (MathSciNet): MR809718
Digital Object Identifier: doi:10.1007/BF01388806 - [13] H. Hofer, Lagrangian embeddings and critical point theory, Ann. Inst. H. Poincare, Anal. Non Linaire 2 (1985) 407-462.
- [14] F. Laudenbach and J. C. Sikorav, Persistence d'intersection avec la section nulle au cours d'une isotopie hamiltonienne dans un fibre cotangent, preprint, 1985.Zentralblatt MATH: 0592.58023
Mathematical Reviews (MathSciNet): MR809719
Digital Object Identifier: doi:10.1007/BF01388807 - [15] J. Milnor, Morse theory, Annals of Math. Studies, No. 51, Princeton University Press, Princeton, NJ, 1963.
- [16] J. Milnor, Morse theory, Lectures on the H-cobordism theorem, Math. Notes, Princeton University Press, Princeton, NJ, 1965.
- [17] R. S. Palais, Morse theory on Hubert manifolds, Topology 2 (1963) 299-340.Zentralblatt MATH: 0122.10702
Mathematical Reviews (MathSciNet): MR158410
Digital Object Identifier: doi:10.1016/0040-9383(63)90013-2 - [18] R. S. Palais, Foundations of global analysis, Benjamin, New York, 1968.
- [19] J. C. Sikorav, Points fixes d'un symplectomorphisme homologue a identite, J. Differential Geometry 22 (1982) 49-79.Zentralblatt MATH: 0555.58013
Mathematical Reviews (MathSciNet): MR826424
Project Euclid: euclid.jdg/1214439721 - [20] E. Spanier, Algebraic topology, McGraw-Hill, New York, 1966.
- [21] C. H. Taubes, Self-dual Yang Mills connections on non-self-dual 4-manifolds, J. Differential Geometlry 17 (1982) 139-170.Zentralblatt MATH: 0484.53026
Mathematical Reviews (MathSciNet): MR658473
Project Euclid: euclid.jdg/1214436701 - [22] C. H. Taubes, Gauge theory on asymptotically periodic 4-manifolds, preprint.Zentralblatt MATH: 0615.57009
Mathematical Reviews (MathSciNet): MR882829
Project Euclid: euclid.jdg/1214440981 - [23] C. Viterbo, Intersections de sous-varietes lagrangiennes fonctionelles d'action et indice des systemes hamiltoniens, preprint, 1986.Zentralblatt MATH: 0639.58018
- [24] A. Weinstein, Symplectic manifolds and their Lagrangian submanifolds, Advances in Math. (1971) 329-346.Zentralblatt MATH: 0213.48203
Mathematical Reviews (MathSciNet): MR286137
Digital Object Identifier: doi:10.1016/0001-8708(71)90020-X - [25] A. Weinstein, Removing intersections of Lagrangian immersions, Illinois J. Math. 27 (1983) 475- 500.
- [26] A. Weinstein, On extending the Conley Zehnder fixed point theorem to other manifolds, Proc. Sympos. Pure Math., No. 45, Amer. Math. Soc, Providence, RI, 1986.
- [27] E. Witten, Supersymmetry and Morse theory, J. Differential Geometry 17 (1982) 661- 692.Zentralblatt MATH: 0499.53056
Mathematical Reviews (MathSciNet): MR683171
Project Euclid: euclid.jdg/1214437492

- You have access to this content.
- You have partial access to this content.
- You do not have access to this content.
More like this
- Lagrangian Submanifolds in Hyperkähler Manifolds, Legendre Transformation
Leung, Naichung Conan, Journal of Differential Geometry, 2002 - Morse theory for trajectories of Lagrangian systems on Riemannian manifolds with convex
boundary
Bartolo, Rossella and Masiello, Antonio, Advances in Differential Equations, 1997 - Lagrangian correspondences and Donaldson's TQFT construction of the Seiberg–Witten invariants of $3$–manifolds
Nguyen, Timothy, Algebraic & Geometric Topology, 2014
- Lagrangian Submanifolds in Hyperkähler Manifolds, Legendre Transformation
Leung, Naichung Conan, Journal of Differential Geometry, 2002 - Morse theory for trajectories of Lagrangian systems on Riemannian manifolds with convex
boundary
Bartolo, Rossella and Masiello, Antonio, Advances in Differential Equations, 1997 - Lagrangian correspondences and Donaldson's TQFT construction of the Seiberg–Witten invariants of $3$–manifolds
Nguyen, Timothy, Algebraic & Geometric Topology, 2014 - Morse homotopy and topological conformal field theory
Fromm, Viktor, Topological Methods in Nonlinear Analysis, 2015 - Coisotropic intersections
Ginzburg, Viktor L., Duke Mathematical Journal, 2007 - Lagrangian submanifolds and Lefschetz pencils
Auroux, , Denis, Muñoz, Vicente, and Presas, Francisco, Journal of Symplectic Geometry, 2005 - Floer trajectories with immersed nodes and scale-dependent gluing
Oh, Yong-Guen and Zhu, Ke, Journal of Symplectic Geometry, 2011 - Displacement of polydisks and Lagrangian Floer theory
Fukaya, Kenji, Oh, Yong-Geun, Ohta, Hiroshi, and Ono, Kaoru, Journal of Symplectic Geometry, 2013 - Intersection of Stable and Unstable Manifolds for Invariant Morse Function
YAMANAKA, Hitoshi, Tokyo Journal of Mathematics, 2013 - Hofer’s symplectic energy and lagrangian intersections in contact geometry
Akaho, Manabu, Journal of Mathematics of Kyoto University, 2001