Journal of Differential Geometry

The Yamabe problem on CR manifolds

David Jerison and John M. Lee

Full-text: Open access

Article information

Source
J. Differential Geom., Volume 25, Number 2 (1987), 167-197.

Dates
First available in Project Euclid: 26 June 2008

Permanent link to this document
https://projecteuclid.org/euclid.jdg/1214440849

Digital Object Identifier
doi:10.4310/jdg/1214440849

Mathematical Reviews number (MathSciNet)
MR880182

Zentralblatt MATH identifier
0661.32026

Subjects
Primary: 58G30
Secondary: 53C15: General geometric structures on manifolds (almost complex, almost product structures, etc.)

Citation

Jerison, David; Lee, John M. The Yamabe problem on CR manifolds. J. Differential Geom. 25 (1987), no. 2, 167--197. doi:10.4310/jdg/1214440849. https://projecteuclid.org/euclid.jdg/1214440849


Export citation

References

  • [1] T. Aubin, Equations differentielles non lineaires et probleme de Yamabe concernant la courbure scalaire, J. Math. Pures Appl. 55 (1976) 269-296.
  • [2] M. Beals, C. Fefferman and R. Grossman, Strictly pseudoconex domains in C", Bull. Amer. Math. Soc. (N. S.) 8 (1983) 125-322.
  • [3] H. Brezis and T. Kato, Remarks on the Schroedinger operator with singular complex potentials, J. Math. Pures Appl. 58 (1979) 137-151.
  • [4] D. Burns, K. Diederich and S. Shnider, Distinguished curves in pseudoconex boundaries, Duke Math. J. 44 (1977) 407-431.
  • [5] S. S. Chern and R. Hamilton, On Riemannian metrics adapted to three-dimensional contact manifolds, preprint.
  • [6] R. R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977) 569-645.
  • [7] F. Farris, An intrinsic construction of Fefferman 1s CR metric, Pacific J. Math. 123 (1986) 33-45.
  • [8] C. Fefferman, Monge-Ampere equations, the Bergman kernel, and geometry of pseudoconex domains, Ann. of Math. 103 (1976) 395-416; Correction, 104 (1976) 393-394.
  • [9] G. B. Folland and E. M. Stein, Estimates for the h-complex and analysis on the Heisenberg group, Comm. Pure Appl. Math. 27 (1974) 429-522
  • [10] S. Helgason, Solvability questions for invariant differential operators, Fifth Internat. Colloq. on Group-Theoretical Methods in Physics, Montreal, 1976.
  • [11] D. Jerison, The Dirichlet problem for the Kohn Laplacian on the Heisenberg group. I, J. Functional Analysis 43 (1981) 97-142.
  • [12] D. Jerison, The Poincare inequality for vector fields satisfying Hormander's condition, in preparation.
  • [13] D. Jerison, Remarks on non-isotropic Sobolev spaces, in preparation.
  • [14] D. Jerison and J. M. Lee, A subelliptic, nonlinear eigenvalue problem and scalar curvature on CR manifolds, Contemporary Math. 27 (1984) 57-63.
  • [15] J. J. Kohn, Boundaries of complex manifolds, Proc. Conf. on Complex Analysis (Minneapolis, 1964), Springer, Berlin, 1965, 81-94.
  • [16] J. M. Lee, The Fefferman metric andpseudohermitian invariants, Trans. Amer. Math. Soc. 296 (1986) 411-429.
  • [17] P.-L. Lions, Applications de la methode de concentration-compacite a existence de functions extremales, C. R. Acad. Sci. Paris Ser. I Math. 296 (1983) 645-648.
  • [18] J. Moser, On Harnack's theorem for elliptic differential equations, Comm. Pure Appl. Math. 14( 1961) 577-591.
  • [19] A. Nagel and E. M. Stein, Lectures on pseudo-differential operators, Princeton University Press, Princeton, NJ, 1979.
  • [20] M. Obata, The conjectures on conformal transformations of Riemannian manifolds, J. Differential Geometry 6 (1971) 247-258.
  • [21] R. Schoen, Conformal deformation of a Riemannian metric to constant scalar curvature, J. Differential Geometry 20 (1984) 479-495.
  • [22] E. M. Stein, Singular integrals and estimates for the Cauchy-Riemann equations, Bull. Amer. Math. Soc. 79 (1973) 440-445.
  • [23] G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl. 110 (1976) 353-372.
  • [24] N. Trudinger, Remarks concerning the conformal deformation of Riemannian structures on compact manifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 22 (1968) 265-274.
  • [25] K. Uhlenbeck, Elliptic theory and calculus of variations on manifolds, Lectures given at Harvard University, 1983.
  • [26] S. M. Webster, Pseudohermitian structures on a real hypersurface, J. Differential Geometry 13 (1978) 25-41.
  • [27] H. Yamabe, On a deformation of Riemannian structures on compact manifolds, Osaka Math. J. 12 (1960) 21-37.