Journal of Differential Geometry
- J. Differential Geom.
- Volume 22, Number 2 (1985), 243-253.
A model for cyclic homology and algebraic $K$-theory of 1-connected topological spaces
Micheline Vigué-Poirrier and Dan Burghelea
Article information
Source
J. Differential Geom., Volume 22, Number 2 (1985), 243-253.
Dates
First available in Project Euclid: 26 June 2008
Permanent link to this document
https://projecteuclid.org/euclid.jdg/1214439821
Digital Object Identifier
doi:10.4310/jdg/1214439821
Mathematical Reviews number (MathSciNet)
MR834279
Zentralblatt MATH identifier
0595.55009
Subjects
Primary: 58E10: Applications to the theory of geodesics (problems in one independent variable)
Secondary: 18F25: Algebraic $K$-theory and L-theory [See also 11Exx, 11R70, 11S70, 12- XX, 13D15, 14Cxx, 16E20, 19-XX, 46L80, 57R65, 57R67] 19D55: $K$-theory and homology; cyclic homology and cohomology [See also 18G60]
Citation
Vigué-Poirrier, Micheline; Burghelea, Dan. A model for cyclic homology and algebraic $K$-theory of 1-connected topological spaces. J. Differential Geom. 22 (1985), no. 2, 243--253. doi:10.4310/jdg/1214439821. https://projecteuclid.org/euclid.jdg/1214439821

