Journal of Differential Geometry

A model for cyclic homology and algebraic $K$-theory of 1-connected topological spaces

Micheline Vigué-Poirrier and Dan Burghelea

Full-text: Open access

Article information

Source
J. Differential Geom., Volume 22, Number 2 (1985), 243-253.

Dates
First available in Project Euclid: 26 June 2008

Permanent link to this document
https://projecteuclid.org/euclid.jdg/1214439821

Digital Object Identifier
doi:10.4310/jdg/1214439821

Mathematical Reviews number (MathSciNet)
MR834279

Zentralblatt MATH identifier
0595.55009

Subjects
Primary: 58E10: Applications to the theory of geodesics (problems in one independent variable)
Secondary: 18F25: Algebraic $K$-theory and L-theory [See also 11Exx, 11R70, 11S70, 12- XX, 13D15, 14Cxx, 16E20, 19-XX, 46L80, 57R65, 57R67] 19D55: $K$-theory and homology; cyclic homology and cohomology [See also 18G60]

Citation

Vigué-Poirrier, Micheline; Burghelea, Dan. A model for cyclic homology and algebraic $K$-theory of 1-connected topological spaces. J. Differential Geom. 22 (1985), no. 2, 243--253. doi:10.4310/jdg/1214439821. https://projecteuclid.org/euclid.jdg/1214439821


Export citation