Journal of Differential Geometry

Isoparametric submanifolds and their Coxeter groups

Chuu-Lian Terng

Full-text: Open access

Article information

Source
J. Differential Geom., Volume 21, Number 1 (1985), 79-107.

Dates
First available in Project Euclid: 26 June 2008

Permanent link to this document
https://projecteuclid.org/euclid.jdg/1214439466

Digital Object Identifier
doi:10.4310/jdg/1214439466

Mathematical Reviews number (MathSciNet)
MR806704

Zentralblatt MATH identifier
0615.53047

Subjects
Primary: 53C40: Global submanifolds [See also 53B25]
Secondary: 53C42: Immersions (minimal, prescribed curvature, tight, etc.) [See also 49Q05, 49Q10, 53A10, 57R40, 57R42]

Citation

Terng, Chuu-Lian. Isoparametric submanifolds and their Coxeter groups. J. Differential Geom. 21 (1985), no. 1, 79--107. doi:10.4310/jdg/1214439466. https://projecteuclid.org/euclid.jdg/1214439466


Export citation

References

  • [1] U. Abresch, Isoparametric hypersurfaces with four or six distinct principal curvatures, Math. Ann. 264 (1983) 283-302
  • [2] C. T. Benson and L. C. Grove, Finite reflection groups, Bogden S. Quigley Inc., 1971.
  • [3] S. Carter and A. West, Isoparametric systems and transnormality, preprint.
  • [4] E. Cartan, Families de surfaces isoparametrique dans les space a courbure constante, Ann. of Math. 17 (1938) 177-191.
  • [5] E. Cartan, Sur des families remarquables d'hypersurfaces isoparametriques dans les espaces spheriques, Math. Z. 45 (1939) 335-367.
  • [6] E. Cartan, Sur quelques families remarquables d'hypersurfaces, C. R. Congres Math. Liege, (1939) 30-41.
  • [7] E. Cartan, Sur des families d'hypersurfaces isoparametriques des espaces spheriques a 5 et a 9. dimension, Univ. Nac. Tucuman Rev. Ser. A 1 (1940) 5-22.
  • [8] S. S. Chern, Minimal submanifolds in a Riemannian manifold (mimeographed), Univ. of Kansas, 1968.
  • [9] C. Chevalley, Invariants of finite groups generated by reflections, Amer. J. Math. 77 (1955) 778-782.
  • [10] L. Conlon, Variational completeness and K-transversal domains, J. Differential Geometry 5 (1971) 135-147.
  • [11] J. Dadok, Polar coordinates induced by actions of compact Lie groups, preprint.
  • [12] J. Eells, On equivariant harmonic maps, Proc. Conf. Differential Geometry and Differential Equations, Fudan Univ., China, 1981, to appear.
  • [13] J. Eells and L. Lemaire, A report on harmonic maps, Bull. London Math. Soc. 10 (1978) 1-68.
  • [14] D. Ferus and H. Karcher, Non-rotational minimal spheres and minimizing cones, to appear.
  • [15] D. Ferus, H. Karcher and H. F. Manzner, Clifford algebren und neue isoparametrische hyperflachen, Math. Z. 177 (1981) 479-502.
  • [16] S. Helgason, Differential geometry and symmetric spaces, Academci Press, New York, 1962.
  • [17] W. Y. Hsiang, On the compact homogeneous minimal submanifolds, Proc. Nat. Acad. Sci. U.S.A. 56 (1966) 5-6.
  • [18] H. F. Mnzner, Isoparametrische Hyperflachen in Spharen. I, II, Math. Ann. 251 (1980) 57-71, 256 (1981) 215-232.
  • [19] K. Nomizu, Elie Carton's work on isoparametric families of hypersurfaces, Proc. Sympos. Pure Math., Vol. 27, Amer. Math. Soc, Providence, RI, 1975, 191-200.
  • [20] H. Ozeki and M. Takeuchi, On some types of isoparametric hypersurfaces in spheres. I; II, Tohoku Math. J. 27 (1975) 515-559, 28 (1976)7-55.
  • [21] R. S. Palais, Applications of the symmetric criticality principle to mathematical physics and differential geometry, Proc. Conf. Differential Geometry and Differential Equations, Fudan Univ., China, 1981, to appear.
  • [22] R. S. Palais and C. L. Terng, A general theory of canonical forms, preprint.
  • [23] C. K. Peng and C. L. Terng, Minimal hypersurfaces of spheres with constant scalar curvature, Annals of Math. Studies, No. 103, Princeton University Press, Princeton, 1983, 177-198.
  • [24] E. A. Ruh and J. Vilms, The tension field of the Gauss map, Trans. Amer. Math. Soc. 149(1970) 569-573.
  • [25] R. Takagi and T. Takahashi, On the principal curvatures of homogeneous hypersurfaces in a sphere, Differential Geometry (in honor of K. Yano), Kinokuniya, Tokyo, 1972, 469-481.
  • [26] G. Warner, Harmonic analysis on semi-simple Lie groups. I, Springer, Berlin, 1972.