Journal of Differential Geometry

On Carnot-Carathéodory metrics

John Mitchell

Full-text: Open access

Article information

J. Differential Geom., Volume 21, Number 1 (1985), 35-45.

First available in Project Euclid: 26 June 2008

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 53C20: Global Riemannian geometry, including pinching [See also 31C12, 58B20]
Secondary: 53C21: Methods of Riemannian geometry, including PDE methods; curvature restrictions [See also 58J60]


Mitchell, John. On Carnot-Carathéodory metrics. J. Differential Geom. 21 (1985), no. 1, 35--45. doi:10.4310/jdg/1214439462.

Export citation


  • [1] W. L. Chow, Systeme von linearen partiellen differentialgleichungen erster ordnug, Math. Ann. 117 (1939) 98-105.
  • [2] J. Dyer, A nilpotent Lie algebra with nilpotent automorphism group, Bull. Amer. Math. Soc. 76 (1970) 52-56.
  • [3] A. F. Filippov, On certain questions in the theory of optimal control, SIAM J. Control Optimization 1 (1962) 76-84.
  • [4] G. B. Folland, Applications of analysis on nilpotent groups to partial differential equations, Bull. Amer. Math. Soc. 83 (1977) 912-930.
  • [5] B. Gaveau, Principle de moindre action, propoagation de la chaleur et estimates sous-elliptiques sur certains groupes nilpotents, Acta Math. 139 (1977) 95-153.
  • [6] Roe Goodman, Nilpotent Lie groups: structure and applications to analysis, Lecture Notes in Math. Vol. 562, Springer, Berlin, 1970.
  • [7] M. Gromov, Groups of polynomial growth and expanding maps, Inst. Hautes Etudes Sci. Publ. Math. No. 53, 1981.
  • [8] M. Gromov, Structures metriques pour les varietes Riemanniennes, CEDIC, Paris, 1981.
  • [9] W. Hurewicz and H. Wallman, Dimension theory, Princeton University Press, Princeton, 1948.
  • [10] G. Metivier, Comm. Partial Differential Equations 1 (1976) 467-519.
  • [11] V. V. Nemytskii and V. V. Stepanov, Qualitative theory of ordinary differential equations, Princeton University Press, Princeton, 1960.
  • [12] Pierre Pansu, Geometrie du groupe d'eisenberg, Thesis, Universite Paris VII, 1982.
  • [13] L. P. Rothschild and E. M. Stein, Hypoelliptic differential operators and nilpotent groups, Acta Math. 137 (1976) 247-320.
  • [14] Bruno Franchi and E. Lanconelli, Une metrique associe a une classe d'operateurs elliptiques degeneres, Proceedings of the Meeting: Linear, Partial, and Pseudo-Differential Operators, Rend. Sem. Mat. Univ. E. Polytech., Torino, 1982.