Journal of Differential Geometry

Examples of simply-connected symplectic non-Kählerian manifolds

Dusa McDuff

Full-text: Open access

Article information

Source
J. Differential Geom., Volume 20, Number 1 (1984), 267-277.

Dates
First available in Project Euclid: 26 June 2008

Permanent link to this document
https://projecteuclid.org/euclid.jdg/1214438999

Digital Object Identifier
doi:10.4310/jdg/1214438999

Mathematical Reviews number (MathSciNet)
MR772133

Zentralblatt MATH identifier
0567.53031

Subjects
Primary: 57R95: Realizing cycles by submanifolds
Secondary: 58F05

Citation

McDuff, Dusa. Examples of simply-connected symplectic non-Kählerian manifolds. J. Differential Geom. 20 (1984), no. 1, 267--277. doi:10.4310/jdg/1214438999. https://projecteuclid.org/euclid.jdg/1214438999


Export citation

References

  • [1] M. M. Gotay, R. Lashof, J. Sniatycki and A. Weinstein, Closed forms on symplectic fibre bundles, Comment Math. Helv. 58 (1983) 617-621.
  • [2] M. Gromov, A topological technique for the construction of solutions of differential equations and inequalities, Vol. 2, Actes Congr. Intemat. Math. (Nice 1970), Gauthier-Villars, Paris, 1971, 221-225.
  • [3] M. Gromov, Differential relations, to appear.
  • [4] A. Haefliger, Lectures on a theorem of Gromo, Lecture Notes in Math. Vol. 209, Springer, Berlin, 1971, 128-141.
  • [5] M. Narasimham and S. Ramanan, Existence of universal connections, Amer. J. Math. 83 (1961) 563-572.
  • [6] W. Thurston, Some simple examples of symplectic manifolds, Proc. Amer. Math. Soc. 55 (1976) 467-468.
  • [7] D. Tischler, Closed 2-forms and an embedding theorem for symplectic manifolds, J. Differential Geometry 12 (1977) 229-235.
  • [8] A. Weinstein, Symplectic manifolds and their Lagrangian submanifolds, Advances in Math. 6 (1971) 329-346.
  • [9] A. Weinstein, Fat bundles and symplectic manifolds, Advances in Math. 37 (1980) 239-250.
  • [10] S.-T. Yau, Problem section, Seminar on differential geometry, Annals of Math. Studies No. 102, Princeton University Press, Princeton, 1982.