Journal of Differential Geometry

Cusps of the projective Gauss map

Clint McCrory and Theodore Shifrin

Full-text: Open access

Article information

Source
J. Differential Geom., Volume 19, Number 1 (1984), 257-276.

Dates
First available in Project Euclid: 26 June 2008

Permanent link to this document
https://projecteuclid.org/euclid.jdg/1214438432

Digital Object Identifier
doi:10.4310/jdg/1214438432

Mathematical Reviews number (MathSciNet)
MR739791

Zentralblatt MATH identifier
0523.53010

Subjects
Primary: 14N10: Enumerative problems (combinatorial problems)
Secondary: 14J25: Special surfaces {For Hilbert modular surfaces, see 14G35} 53A20: Projective differential geometry 58C27

Citation

McCrory, Clint; Shifrin, Theodore. Cusps of the projective Gauss map. J. Differential Geom. 19 (1984), no. 1, 257--276. doi:10.4310/jdg/1214438432. https://projecteuclid.org/euclid.jdg/1214438432


Export citation

References

  • [1] V. I. Arnold, Critical points of smooth functions, Proc. Internat. Congr. Math., Vancouver, 1974, 19-39.
  • [2] V. I. Arnold, Geometrical methods in the theory of ordinary differential equations, Springer, New York, 1983.
  • [3] V. I. Arnold, indices of singular points of forms on a manifold with boundary, convolution of invariants of reflection groups, and singularities of projections of smooth surfaces, Uspehi Mat. Nauk 34:2 (1979) 3-38; English transl. in Russian Math. Surveys 34:2 (1979) 1-42.
  • [4] V. I. Arnold, Singularities in systems of rays, Uspehi Mat. Nauk 38:2 (1983)77-147.
  • [5] V. I. Arnold, A. N. Varchenkoand S. M. Gusein-Zade, Singularities of differentiable mappings, "Nauka", Moscow 1981; English transl., Birkhauser, Boston, to appear.
  • [6] T. Banchoff, T. Gaffney and C. McCrory, Cusps of Gauss mappings, Research Notes in Math., No. 55, Pitman, Boston, 1982.
  • [7] D. Bleeker and L. Wilson, Stability of Gauss maps, Illinois J. Math. 22 (1978) 279-289.
  • [8] J. W. Bruce, The duals of generic hypersurfaces, Math. Scand. 49 (1981) 36-60.
  • [9] E. Cartan, Lecons sur la geometrie projective complexe, Gauthiers-Villars, Paris, 1931.
  • [10] M. Golubitsky and V. Guillemin, Stable mappings and their singularities, Springer, New York, 1973.
  • [11] P. Griffiths and J. Harris, Principles of algebraic geometry, Wiley, New York, 1978.
  • [12] P. Griffiths and J. Harris, Algebraic geometry and local differential geometry, Ann. Sci. Ecole Norm. Sup. (4) 12 (1979) 355-452.
  • [13] Y. L. Kergosien and R. Thorn, Sur les points paraboliques des surfaces, C. R. Acad. Sci. Paris Ser. A-B, 299 (1980) 705-710.
  • [14] J. King, The currents defined by analytic varieties, Acta Math. 127 (1971) 185-220.
  • [15] F. Klein, Uber Flachen dritter Ordunung, Gesammelte Mathematische Abhandlungen, II Band, Berlin, 1922, 11-62.
  • [16] V. S. Kulikov, Calculation of singularities of embeddings of generic algebraic surfaces in projective space P3, Funktsional. Anal. i Prilozhen. 17:3 (1983) 15-27.
  • [16a] V. S. Kulikov, On the number of special local centers of projection of an algebraic surface, Uspehi Mat. Nauk 38 (1983).
  • [17] E. E. Landis, Tangential singularities, Funktsional. Anal. i Prilozhen. 15:2 (1981) 36-49; English transl. in Functional Anal. Appl. 15 (1981) 103-114.
  • [18] J. Martinet, Singularities of smooth functions and maps, London Math. Soc. Lecture Notes No. 58, Cambridge, 1982.
  • [19] J. Mather, Stable map-germs and algebraic geometry, Manifolds-Amsterdam, Lecture Notes in Math., Vol. 197, Springer, Berlin and New York, 1970, 176-193.
  • [20] R. Piene, Some formulas for a surface in P3, Algebraic Geometry, Lecture Notes in Math., Vol. 678, Springer, Berlin and New York, 1978, 196-235.
  • [21] O. A. Platonova, Singularities of contact of a surface and a /line, Uspehi Mat. Nauk 36:1 (1981) 221-222; Russian Math. Surveys 36:1 (1981) 248-249.
  • [22] G. Salmon, A treatise on the analytic geometry of three dimensions, 4th ed., Dublin, 1882.
  • [23] T. Shifrin, The kinematic formula in complex integral geometry, Trans. Amer. Math. Soc. 264 (1981) 255-293.
  • [24] M. Spivak, A comprehensive introduction to differential geometry, Vol. III, Publish or Perish, Boston, 1979.