Journal of Differential Geometry

Semisimple automorphism groups of $G$-structures

Robert J. Zimmer

Full-text: Open access

Article information

Source
J. Differential Geom., Volume 19, Number 1 (1984), 117-123.

Dates
First available in Project Euclid: 26 June 2008

Permanent link to this document
https://projecteuclid.org/euclid.jdg/1214438425

Digital Object Identifier
doi:10.4310/jdg/1214438425

Mathematical Reviews number (MathSciNet)
MR739784

Zentralblatt MATH identifier
0544.53029

Subjects
Primary: 53C10: $G$-structures
Secondary: 22E60: Lie algebras of Lie groups {For the algebraic theory of Lie algebras, see 17Bxx}

Citation

Zimmer, Robert J. Semisimple automorphism groups of $G$-structures. J. Differential Geom. 19 (1984), no. 1, 117--123. doi:10.4310/jdg/1214438425. https://projecteuclid.org/euclid.jdg/1214438425


Export citation

References

  • [1] L. Auslander and C. C. Moore, Unitary representations of solvable Lie groups, Mem. Amer. Math. Soc. No. 62, 1966.
  • [2] A. Borel, Density properties for certain subgroups of semisimple groups without compact factors, Ann. of Math. 72 (1960) 179-188.
  • [3] Y. Derriennic, Sur le theoreme ergodique sous-additif, C. R. Acad. Sci. Paris Ser. A, 281 (1975) 985-988.
  • [4] E. G. Effros, Transformation groups and C*-algebras, Ann. of Math. 81 (1965) 38-55.
  • [5] H. Furstenberg and H. Kesten, Products of random matrices, Ann. of Math. Statist. 31 (1960) 457-469.
  • [6] V. Guillemin, Integrability problem for G-structures, Trans. Amer. Math. Soc. 116 (1965) 554-560.
  • [7] J. F. C. Kingman, The ergodic theory of subadditive stochastic processes, J. Royal Statist. Soc. Ser. B, 30 (1968) 499-510.
  • [8] S. Kobayashi, Transformation groups in differential geometry, Springer, New York, 1972.
  • [9] G. A. Margulis, Discrete groups of motions of manifolds of non-positive curvature, Amer. Math. Soc. Transl., No. 109, 1977, 33-45.
  • [10] A. Ramsay, Virtual groups and group actions, Advances in Math. 6 (1971) 253-322.
  • [11] R. J. Zimmer, Strong rigidity for ergodic actions of semisimple Lie groups, Ann. of Math. 112 (1980) 511-529.
  • [12] R. J. Zimmer, Ergodic theory and semisimple groups, to appear.
  • [13] R. J. Zimmer, Volume preserving actions of lattices in semisimple groups on compact manifolds, Inst. Hautes Etudes Sci. Publ. Math., to appear.