Journal of Differential Geometry

Equivariant Morse theory and closed geodesics

N. Hingston

Full-text: Open access

Article information

Source
J. Differential Geom., Volume 19, Number 1 (1984), 85-116.

Dates
First available in Project Euclid: 26 June 2008

Permanent link to this document
https://projecteuclid.org/euclid.jdg/1214438424

Digital Object Identifier
doi:10.4310/jdg/1214438424

Mathematical Reviews number (MathSciNet)
MR739783

Zentralblatt MATH identifier
0561.58007

Subjects
Primary: 58E10: Applications to the theory of geodesics (problems in one independent variable)
Secondary: 53C22: Geodesics [See also 58E10] 57R70: Critical points and critical submanifolds

Citation

Hingston, N. Equivariant Morse theory and closed geodesics. J. Differential Geom. 19 (1984), no. 1, 85--116. doi:10.4310/jdg/1214438424. https://projecteuclid.org/euclid.jdg/1214438424


Export citation

References

  • [1] S. I. Alber, On periodicity problems in the calculus of variations in the large, Amer. Math. Soc. Transl. (2) 14 (1960) 107-172.
  • [2] D. V. Anosov, Some homotopies in spaces of closed curves, Izv. Akad. Nauk SSSR Ser. Mat. 44 (1980) 1219-1254. (Russian)
  • [3] M. Atiyah and R. Bott, On the Yang-Mills equations over Riemann surfaces, to appear.
  • [4] W. Ballmann, Der Satz von Lusternik-Schnirelmann, Bonner Math. Schriften 102 (1978).
  • [5] W. Ballmann, G. Thorbergsson and W. Ziller, On the existence of short closed geodesics and their stability properties, Preprint, University of Pennsylvania, 1980.
  • [6] W. Ballmann, Closed geodesics on positively curved manifolds. II, to appear.
  • [7] A. Besse, Manifolds all of whose geodesics are closed, Springer, Berlin, 1978.
  • [8] G. D. Birkhoff, Dynamical Systems, Amer. Math. Soc. Colloq. Publ., No. 9, Amer. Math. Soc, Providence, RI, 1927.
  • [9] S. Bochner and D. Montgomery, Groups of differentiable and real or complex analytic transformations, Ann. of Math. 46 (1945) 685-694.
  • [10] A. Borel, et al., Seminar on transformation groups, Princeton, NJ, Annals of Math. Studies, No. 46, Princeton University Press, Princeton, 1961.
  • [11] R. Bott, N on-degenerate critical manifolds, Ann. of Math. 60 (1954) 284-261.
  • [12] R. Bott, On the iteration of closed geodesics and the Sturm intersection theory, Comm. Pure Appl. Math. 9 (1956) 171-206.
  • [13] R. Bott, et. al., Gel'fand-Fuks cohomology and foliation. Proc. 11th Ann. Holiday Sympos. New Mexico State University, Las Cruces, 1973.
  • [14] R. Bott, On some formulas for the characteristic classes of group-actions, Harvard University Lecture Notes, 1974.
  • [15] R. Bott and H. Samelson, Applications of the theory of Morse to symmetric spaces, Amer. J.Math. 80 (1958) 964-1029.
  • [16] N. Bourbaki, General topology (transl.), Addison-Wesley, Reading, MA, 1966.
  • [17] H. Cartan and S. Eilenberg, Homological algebra, Princeton University Press, Princeton, 1956.
  • [18] J. Cheeger and D. Ebin, Comparison theorems in Riemannian geometry, North-Holland, Amsterdam, 1975.
  • [19] J. Eells, On the geometry of function spaces, Sympos. Internac. Topologia Algebrica, Mexico, 1958, 303-308.
  • [20] H. Eliasson, On the geometry of manifolds of maps, J. Differential Geometry 1 (1967) 165-194.
  • [21] H. Eliasson, Morse theory for closed curves, Sympos. Infinite Dimensional Topology, Annals Math. Studies, No. 69, Princeton University Press, Princeton, 63-77.
  • [22] A. Friedman, Partial differential equations of parabolic type, Prentice-Hall, Englewood Cliffs, 1964.
  • [23] M. Gromov, Homotopical effects of dilation, J. Differential Geometry 13 (1978) 303-310.
  • [24] A. I. Grjuntal, The existence of convex spherical metrics all of whose closed geodesics without self-intersection are hyperbolic, Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979) 3-18; English transl.; Math. USSR-Izv. 14 (1980) 3-18.
  • [25] D. Gromoll and W. Meyer, On differential functions with isolated critical points, Topology 8 (1969) 361-369.
  • [26] D. Gromoll and W. Meyer, Periodic geodesics on compact Riemannian manifolds, J. Differential Geometry 3 (1969) 493-510.
  • [27] Haefliger, On the Gelfand-Fuchs cohomology, Topology and Algebra, Proc. Colloq. in Honor of B. Eckmann, Enseignement Math., Universite de Geneve, 1978.
  • [28] N. Hingston, Equivariant Morse theory and closed geodesics thesis, Harvard University, 1981.
  • [29] W. Y. Hsiang, Cohomology theory of topological transformation groups. Springer, New York, 1975.
  • [30] D. H. Husemoller, Fiber bundles, McGraw-Hill, New York, 1966.
  • [31] W. Klingenberg, Closed geodesics. Ann. of Math. 89 (1969) 68-91.
  • [32] D. H. Husemoller, Fiber bundles, Lectures on closed geodesics, Springer, Berlin, 1978.
  • [33] L. Lusternik and L. Schnirelmann, Sur le probleme de trois geodesiques fermees sur les surfaces de genres 0, C. R. Acad. Sci. Paris 189 (1929) 269-271.
  • [34] J. Milnor, Construction of universal bundles I, II, Ann. of Math. 63 (1956) 272-284, 430-436.
  • [35] J. Milnor, The geometric realization of a semi-simplicial complex, Ann. of Math. 65 (1957) 357-362.
  • [36] W. Meyer, Kritische Mannigfaltigkeiten in Hilbermannigfaltigkeiten, Math. Ann. 170 (1967) 45-66.
  • [37] M. Morse, The calculus of variations in the large, Amer. Math. Soc, Providence, RI, 1934.
  • [38] J. Moser, Proof of a generalized form of a fixed point theorem due to G. D. Birkhoff, Lecture Notes in Math., Vol. 597, Springer, Berlin and New York, 1977, 464-494.
  • [39] R. Palais, On the existence of slices for actions of noncompact Lie groups, Ann. of Math. 73 (1961) 295-323.
  • [40] R. Palais, Morse theory on Hubert manifolds, Topology 2 (1963) 299-340.
  • [41] R. Palais, Homotopy theory of infinite dimensional manifolds, Topology 5 (1966) 1-16.
  • [42] R. Palais, Foundations of global nonlinear analysis, Benjamin, New York, 1968.
  • [43] H. Poincare, Sur les lignes geodesiques des surfaces convexes, Trans. Amer. Math. Soc. 6 (1905) 237-274.
  • [44] G. Segal, Classifying spaces and spectral sequences, Inst. Hautes Etudes Sci. Publ. Math. No. 34 (1968) 105-112.
  • [45] M. Vigue-Poirrier and D. Sullivan, The homology theory of the closed geodesic problem, J. Differential Geometry 12 (1976) 633-644.
  • [46] A. Wasserman, Equivariant differential topology, Topology 8 (1969) 127-150.
  • [47] J. Wolf, Elliptic spaces in Grassmann manifolds, Illinois J. Math. 7 (1963) 447-462.
  • [48] W. Ziller, Geschlossene Geodaetische auf global symmetrischen und homogenen Raeumen, Bonner Math. Schriften 85 (1976).