Journal of Differential Geometry

Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds

Jeff Cheeger, Mikhail Gromov, and Michael Taylor

Full-text: Open access

Article information

Source
J. Differential Geom. Volume 17, Number 1 (1982), 15-53.

Dates
First available in Project Euclid: 25 June 2008

Permanent link to this document
https://projecteuclid.org/euclid.jdg/1214436699

Digital Object Identifier
doi:10.4310/jdg/1214436699

Mathematical Reviews number (MathSciNet)
MR658471

Zentralblatt MATH identifier
0493.53035

Subjects
Primary: 58G30
Secondary: 53C21: Methods of Riemannian geometry, including PDE methods; curvature restrictions [See also 58J60]

Citation

Cheeger, Jeff; Gromov, Mikhail; Taylor, Michael. Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds. J. Differential Geom. 17 (1982), no. 1, 15--53. doi:10.4310/jdg/1214436699. https://projecteuclid.org/euclid.jdg/1214436699.


Export citation