Journal of Differential Geometry

Pseudo-Hermitian structures on a real hypersurface

S. M. Webster

Full-text: Open access

Article information

J. Differential Geom., Volume 13, Number 1 (1978), 25-41.

First available in Project Euclid: 25 June 2008

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 32F25
Secondary: 53B35: Hermitian and Kählerian structures [See also 32Cxx] 58H05: Pseudogroups and differentiable groupoids [See also 22A22, 22E65]


Webster, S. M. Pseudo-Hermitian structures on a real hypersurface. J. Differential Geom. 13 (1978), no. 1, 25--41. doi:10.4310/jdg/1214434345.

Export citation


  • [1] S. Bochner, Curvature and Betti numbers. II, Ann. of Math. 50 (1949) 77-93.
  • [2] E. Cartan, Sur la geometrie pseudo-conforme des hypersurfaces de espace de deux variables complex. I and II, Ann. Mat. Pura Appl. 11 (1932) 17-90, and Ann. Scuola Norm. Sup. Pisa Sci. Fis. Mat. 1 (1932) 333-354.
  • [3] E. Cartan, Lecons sur la geometrie des espaces de Riemann, Gauthier-Villars, Paris, 1951.
  • [4] S. S. Chern, Differentiable manifolds, Lecture notes, University of Chicago, 1959.
  • [5] S. S. Chern, Differentiable manifolds, Complex manifolds without potential theory, Math. Studies No. 15, Van Nostrand, Princeton, 1967.
  • [6] S. S. Chern and J. Moser, Real hypersurfaces in complex manifolds, Acta Math. 133 (1974) 219-271.
  • [7] L. P. Eisenhart, Riemannian geometry, Princeton University Press, Princeton, 1966.
  • [8] C. Fefferman, The Bergman kernel and biholomorphic mappings of pseudo-convex domains, Invent. Math. 26 (1974) 1-65.
  • [9] N. Tanaka, On the pseudo-conformal geometry of hypersurfaces of the space of n complex variables, J. Math. Soc. Japan 14 (1962) 397-429.
  • [10] S. Webster, Real hypersurfaces in complex space, Thesis, University of California, Berkeley, 1975.