Journal of Differential Geometry

The length spectra of some compact manifolds of negative curvature

Ramesh Gangolli

Full-text: Open access

Article information

Source
J. Differential Geom., Volume 12, Number 3 (1977), 403-424.

Dates
First available in Project Euclid: 25 June 2008

Permanent link to this document
https://projecteuclid.org/euclid.jdg/1214434092

Digital Object Identifier
doi:10.4310/jdg/1214434092

Mathematical Reviews number (MathSciNet)
MR0650997

Zentralblatt MATH identifier
0365.53016

Subjects
Primary: 58G99
Secondary: 10D15

Citation

Gangolli, Ramesh. The length spectra of some compact manifolds of negative curvature. J. Differential Geom. 12 (1977), no. 3, 403--424. doi:10.4310/jdg/1214434092. https://projecteuclid.org/euclid.jdg/1214434092


Export citation

References

  • [1] L. Berard-Bergery, Laplacien et geodesiques fermes sur les formes de space hyperbolque cmpactes, Seminaire Bourbaki, 24ieme Annee, 1971-72, Exp. 406.
  • [2] R. L. Bishop and B. O'Neill, Manifolds of negative curvature, Trans. Amer. Soc. 145 (1969) 1-48.
  • [3] T. Eaton, Thesis, University of Washington, Seattle, 1972.
  • [4] R. Gangolli, Asymptotic behaviour of spectra of compact quotients of certain symmetric spaces, Acta Math. 121 (1968) 151-192.
  • [5] R. Gangolli, Spherical functions on semisimple Lie groups, Geometry and analysis on symmetric spaces, Marcel Dekker, New York, 1972.
  • [6] R. Gangolli, Spectra of discrete uniform subgroups, Geometry and analysis on symmetric spaces, Marcel Dekker, New York, 1972.
  • [7] R. Gangolli and G. Warner, On Selberg's trace formula, J. Math. Soc. Japan 27 (1975) 328-343.
  • [8] Harish-Chandra, Spherical functions on semisimple Lie groups. I, II, Amer. J. Math. 80 (1958) 241-310, 533-613.
  • [9] Harish-Chandra, Invariant eigen distributions on a semisimple Lie group, Trans. Amer. Math. Soc. 119 (1965) 457-508.
  • [10] Harish-Chandra, Discrete series for semisimple Lie groups. II, Acta Math. 116 (1966) 1-111.
  • [11] S. Helgason, Differential geometry and symmetric spaces, Academic Press, New York, 1962.
  • [12] H. Huber, Zur analytschen theorie hyperbolisher raumformen und bewegungsgruppen. I, Math. Ann. 138 (1959) 1-26.
  • [13] G. A. Margulis, Certain applications of ergodic theory to the investigation of manifolds of negative curvature, J. Functional Anal. i Prilozen 3 (1969) 89-90, (Russian).
  • [14] H. P. McKean, Selberg's trace formula as applied to a compact Riemann surface, Comm. Pure Appl. Math. 25 (1972) 225-246.
  • [15] S. Minakshisundaram and A. Pleijel, Some properties of the eigenfunctions of the Laplace operator on Riemannian manifolds, Canad. J. Math. 1 (1949) 242-256.
  • [16] V. Ozols, On the critical points of the displacement function of an isometry, J. Differential Geometry 3 (1969) 411-432.
  • [17] A. Preismann, Quelques proprietes globales des espaces de Riemann, Comment. Math. Helv. 15 (1943) 175-216.
  • [18] A. Selberg, Harmonic analysis and discontinuous subgroups in weekly symmetric Riemannian spaces with applications to Dirichlet series, J. Indian Math. Soc. 20 (1956) 47-87.
  • [19] Seminaire Berger, Varietes a courbures negative, Universite Paris VII, 1970/71.
  • [20] Y. Sinai, The asymptotic behaviour of the number of closed geodesics on a compact manifold of negative curvature, Izv. Akad. Nauk. SSSR Ser. Mat. 30 (1966) 1275-1296.
  • [21] P. Trombi and V. S. Varadarajan, Spherical transforms on semismple Lie groups, Ann. of Math. 94 (1971) 246-303.
  • [22] N. Wallach, An asymptotic formula of Gelfand and Gangolli for the spectrum of [math], J. Differential Geometry 11 (1976) 91-101.
  • [23] G. Warner, Harmonic analysis on semisimple Lie groups. I, II, Springer, Berlin, 1972.
  • [24] H. Weyl, Das asymptotsche Verteilungsgesetz der eigenschwingungen eines beliebig gestalteten elastischen korpers, Rend. Circ. Mat. Palermo 39 (1915) 1-50.
  • [25] D. Widder, The Laplace transform, Princeton University Press, Princeton, 1941.
  • [26] N. Wiener, Tauberian theorems, Ann. of Math. 33 (1932) 1-100.
  • [27] J. A. Wolf, Spaces of constant curvature, McGraw-Hill, New York, 1967.