Journal of Differential Geometry

On the geometry and classification of absolute parallelisms. II

Joseph A. Wolf

Full-text: Open access

Article information

Source
J. Differential Geom., Volume 7, Number 1-2 (1972), 19-44.

Dates
First available in Project Euclid: 25 June 2008

Permanent link to this document
https://projecteuclid.org/euclid.jdg/1214430818

Digital Object Identifier
doi:10.4310/jdg/1214430818

Mathematical Reviews number (MathSciNet)
MR0312443

Zentralblatt MATH identifier
0276.53017

Subjects
Primary: 53C50: Lorentz manifolds, manifolds with indefinite metrics

Citation

Wolf, Joseph A. On the geometry and classification of absolute parallelisms. II. J. Differential Geom. 7 (1972), no. 1-2, 19--44. doi:10.4310/jdg/1214430818. https://projecteuclid.org/euclid.jdg/1214430818


Export citation

References

  • [1] L. Auslander, On radicals of discrete subgroups of Lie groups, Amer. J. Math. 85 (1963) 145-150.
  • [2] A. Borel, Compact Clifford-Klein forms of symmetric spaces, Topology 2 (1963) 111-122.
  • [3] E. Cartan and J. A. Schouten, On the geometry of the group manifold of simple and semisimple groups, Nederl. Akad. Wetensch. Proc. Ser. A, 29 (1926) 803-815.
  • [4] E. Cartan and J. A. Schouten, On Riemannian geometries admitting an absolute parallelism, Nederl. Akad. Wetensch. Proc. Ser. A, 29 (1926) 933-946.
  • [5] J. E. D'Atri and H. K. Nickerson, The existence of special orthonormal frames, J. Differential Geometry 2 (1968) 393-409.
  • [6] N. J. Hicks, A theorem on affine connexions, Illinois J. Math. 3 (1959) 242-254.
  • [7] N. Jacobson, General representation theory of Jordan algebras, Trans. Amer. Math. Soc. 70 (1951) 509-530.
  • [8] N. Jacobson, Structure and representations of Jordan algebras, Amer. Math. Soc. Colloq. Publ. Vol. 39, 1968.
  • [9] W. G. Lister, A structure theory of Lie triple systems, Trans. Amer. Math. Soc. 72 (1952) 217-242.
  • [10] A. I. Macev, On a class of homogeneous spaces, Izv. Akad. Nauk SSSR, Ser. Mat. 13 (1949) 9-32.
  • [11] J. A. Wolf, Spaces of constant curvature, Second edition, Berkeley, 1972.
  • [12] J. A. Wolf and A. Gray, Homogeneous spaces defined by Lie group automorphisms. II, J. Differential Geometry 2 (1968) 115-159.

See also

  • Part I: Joseph A. Wolf. On the geometry and classification of absolute parallelisms. I. J. Differential Geometry, Volume 6, Number 3, (1971/72), 317--342.