Journal of Differential Geometry
- J. Differential Geom.
- Volume 3, Number 1-2 (1969), 1-18.
Equivariant $K$-theory and completion
Full-text: Open access
Article information
Source
J. Differential Geom., Volume 3, Number 1-2 (1969), 1-18.
Dates
First available in Project Euclid: 25 June 2008
Permanent link to this document
https://projecteuclid.org/euclid.jdg/1214428815
Digital Object Identifier
doi:10.4310/jdg/1214428815
Mathematical Reviews number (MathSciNet)
MR0259946
Zentralblatt MATH identifier
0215.24403
Subjects
Primary: 57.40
Secondary: 18.00
Citation
Atiyah, M. F.; Segal, G. B. Equivariant $K$-theory and completion. J. Differential Geom. 3 (1969), no. 1-2, 1--18. doi:10.4310/jdg/1214428815. https://projecteuclid.org/euclid.jdg/1214428815
References
- [1] D. W. Anderson, Thesis, Berkeley, 1963.
- [2] M. F. Atiyah and F. Hirzebruch, Vector bundles and homogeneous spaces, Proc. Sympos. Pure Math. Vol. 3, Amer. Math. Soc. 1961, 7-38.
- [3] M. F. Atiyah, Characters and cohomology of finite groups, Inst. Hautes Etudes Sci. Publ. Math. No. 9 (1961) 23-64.Zentralblatt MATH: 0107.02303
Mathematical Reviews (MathSciNet): MR148722
Digital Object Identifier: doi:10.1007/BF02698718 - [4]M. F. Atiyah, K-theory and reality, Quart. J. Math. Oxford Ser. 17 (1966) 367-386.Zentralblatt MATH: 0146.19101
Mathematical Reviews (MathSciNet): MR206940
Digital Object Identifier: doi:10.1093/qmath/17.1.367 - [5] M. F. Atiyah, K-theory, Benjamin, New York, 1967.Mathematical Reviews (MathSciNet): MR224083
- [6] M. F. Atiyah, Bott periodicity and the index of elliptic operators, Quart. J. Math. Oxford Ser. 19 (1968) 113-140.Zentralblatt MATH: 0159.53501
Mathematical Reviews (MathSciNet): MR228000
Digital Object Identifier: doi:10.1093/qmath/19.1.113 - [7] M. F. Atiyah and I. G. Macdonald, Introduction to commutative algebra, Addison-Wesley, Reading, Mass., 1969.
- [8] M. F. Atiyah and D. Tall, Group representations, -rings and the J-homomorphism, Topology 7 (1969) to appear.Zentralblatt MATH: 0159.53301
Mathematical Reviews (MathSciNet): MR244387
Digital Object Identifier: doi:10.1016/0040-9383(69)90015-9 - [9] M. F. Atiyah, R. Bott and A. Shapiro, Clifford modules, Topology 3 (1964) suppl. 1, 3-38.Zentralblatt MATH: 0146.19001
Mathematical Reviews (MathSciNet): MR167985
Digital Object Identifier: doi:10.1016/0040-9383(64)90003-5 - [10] G. E. Bredon, Examples of differentiable group actions, Topology 3 (1965) 115-122.Zentralblatt MATH: 0125.40102
Mathematical Reviews (MathSciNet): MR205273
Digital Object Identifier: doi:10.1016/0040-9383(65)90038-8 - [11] A. Dold, Partitions of unity in the theory of fibrations, Ann. of Math. 78 (1963) 223-255.Zentralblatt MATH: 0203.25402
Mathematical Reviews (MathSciNet): MR155330
Digital Object Identifier: doi:10.2307/1970341
JSTOR: links.jstor.org - [12] A. Grothendieck and J. Dieudonne, Elements de geometrie algebrique III. Etude cohomologique des faisceaux coherents. I, Inst. Hautes Etudes Sci. Publ. Math. No. 11 (1961).
- [13] A. Grothendieck and J. Dieudonne, Technique de descente et theoremes d'existence en geometrie algebrique II, Seminaire Bourbaki, 12ieme annee, 1959-60, Exp. 195.Zentralblatt MATH: 0234.14007
- [14] F. Hirzebruch, Singularities and Exotic spheres, Seminaire Bourbaki, l8ieme annee 1965-66, Exp. 314.Zentralblatt MATH: 0213.47701
- [15] J. W. Milnor, Construction of universal bundles I, Ann. of Math. 63 (1956) 272-284.Zentralblatt MATH: 0071.17302
Mathematical Reviews (MathSciNet): MR77122
Digital Object Identifier: doi:10.2307/1969609
JSTOR: links.jstor.org - [16] J. W. Milnor, Axiomatic homology theory, Pacific J. Math. 12, (1962) 337-341.Zentralblatt MATH: 0114.39604
Mathematical Reviews (MathSciNet): MR159327
Project Euclid: euclid.pjm/1103036730 - [17] G. B. Segal, Equivariant K-theory, Inst. Hautes Etudes Sci. Publ. Math. No. 34 (1968) 129-151.Zentralblatt MATH: 0199.26202
Mathematical Reviews (MathSciNet): MR234452
Digital Object Identifier: doi:10.1007/BF02684593 - [18] G. B. Segal, Equivariant K-theory, The representation-ring of a compact Lie group, Inst. Hautes Etudes Sci. Publ. Math. No. 34 (1968) 113-128.Zentralblatt MATH: 0209.06203
Mathematical Reviews (MathSciNet): MR248277
Digital Object Identifier: doi:10.1007/BF02684592

- You have access to this content.
- You have partial access to this content.
- You do not have access to this content.
More like this
- The Atiyah–Segal completion theorem in twisted $K$–theory
Lahtinen, Anssi, Algebraic & Geometric Topology, 2012 - Algebraic cycles and completions of equivariant K-theory
Edidin, Dan and Graham, William, Duke Mathematical Journal, 2008 - Categorical models for equivariant classifying spaces
Guillou, Bertrand, May, Peter, and Merling, Mona, Algebraic & Geometric Topology, 2017
- The Atiyah–Segal completion theorem in twisted $K$–theory
Lahtinen, Anssi, Algebraic & Geometric Topology, 2012 - Algebraic cycles and completions of equivariant K-theory
Edidin, Dan and Graham, William, Duke Mathematical Journal, 2008 - Categorical models for equivariant classifying spaces
Guillou, Bertrand, May, Peter, and Merling, Mona, Algebraic & Geometric Topology, 2017 - Equivariant version of real and complex connective $K$-theory
Greenlees, J. P. C., Homology, Homotopy and Applications, 2005 - K-théorie équivariante des tours de Bott. Application à la structure multiplicative de la K-théorie équivariante des variétés de drapeaux
Willems, Matthieu, Duke Mathematical Journal, 2006 - The equivariant $J$-homomorphism
French, Christopher, Homology, Homotopy and Applications, 2003 - The Künneth Theorem in equivariant $K$–theory for actions of a cyclic group of order $2$
Rosenberg, Jonathan, Algebraic & Geometric Topology, 2013 - Twisted equivariant $K$–theory and $K$–homology of $\mathrm{Sl}_3{\mathbb{Z}}$
Bárcenas, Noé and Velásquez, Mario, Algebraic & Geometric Topology, 2014 - Equivariant vector bundles, their derived category and $K$-theory on affine schemes
Krishna, Amalendu and Ravi, Charanya, Annals of K-Theory, 2017 - Equivariant cohomology Chern numbers determine equivariant unitary bordism for torus groups
Lü, Zhi and Wang, Wei, Algebraic & Geometric Topology, 2018
