Journal of Differential Geometry

Nonnegative Ricci curvature, small linear diameter growth and finite generation of fundamental groups

Christina Sormani

Full-text: Open access

Article information

Source
J. Differential Geom., Volume 54, Number 3 (2000), 547-559.

Dates
First available in Project Euclid: 24 June 2008

Permanent link to this document
https://projecteuclid.org/euclid.jdg/1214339792

Digital Object Identifier
doi:10.4310/jdg/1214339792

Mathematical Reviews number (MathSciNet)
MR1823314

Zentralblatt MATH identifier
1035.53045

Subjects
Primary: 53C21: Methods of Riemannian geometry, including PDE methods; curvature restrictions [See also 58J60]
Secondary: 53C20: Global Riemannian geometry, including pinching [See also 31C12, 58B20]

Citation

Sormani, Christina. Nonnegative Ricci curvature, small linear diameter growth and finite generation of fundamental groups. J. Differential Geom. 54 (2000), no. 3, 547--559. doi:10.4310/jdg/1214339792. https://projecteuclid.org/euclid.jdg/1214339792


Export citation

References

  • [1] U. Abresch and D. Gromoll, On complete manifolds with nonnegative Ricci curvature, J. Amer. Math. Soc. 3 (1990) 355-374.
  • [2] M. Anderson, On the topology of complete manifolds of nonnegative Ricci curvature, Topology 29 (1990) 41-55.
  • [3] J. Cheeger, Critical points of distance functions and applications to geometry, Geometric topology: recent developments (Montecatini Terme, 1990), 1-38, Lecture Notes in Math., 1504, Springer, Berlin, 1991.
  • [4] J. Cheeger and T. Colding, On the structure of spaces with Ricci curvature bounded below. I, J. Differential Geom. 46 (1997) 406-480
  • [5] J. Cheeger and D. Ebin, Comparison theorems in Riemannian geometry, North-Holland Mathematical Library, Vol. 9. North-Holland Publishing Co., Amsterdam- Oxford; American Elsevier Publishing Co., Inc., New York, 1975. viii+174 pp.
  • [6] J. Cheeger and D. Gromoll, On the structure of complete manifolds of nonnegative curvature. Ann. of Math. 96 (1972, 413-443.
  • [7] J. Cheeger and D. Gromoll, The splitting theorem for manifolds of nonnegative Ricci curvature, J. Differential Geom. 6 (1971/72) 119-128.
  • [8] M. Gromov, Groups of polynomial growth and expanding maps, Inst. Hautes Études Sci. Publ. Math. 53 (1981) 53-73.
  • [9] M. Gromov, J. Lafontaine and P. Pansu, Structures Métriques pour les Variétés Riemanniennes, (French) Textes Mathématiques, 1. CEDIC, Paris, 1981.
  • [10] P. Li, Large time behavior of the heat equation on complete manifolds with nonnegative Ricci curvature, Ann. of Math. 124 (1986) 1-21.
  • [11]J. Milnor, A note on curvature and fundamental group, J. Differential Geom. 2 1968 1-7.
  • [12] G. Perelman, Collapsing with no proper extremal subsets, Comparison geometry (Berkeley, CA, 1993-94), 149-155, Math. Sei. Res. Inst. Publ., 30, Cambridge Univ. Press, Cambridge, 1997.
  • [13] R. Schoen and S-T Yau, Complete three-dimensional manifolds with positive Ricci
  • [14] C. Sorniani, The rigidity and almost rigidity of manifolds with minimal volume growth, Preprint, Dec. 97. To appear in Communications in Analysis and Geometry.
  • [15] G. Wei, Examples of complete manifolds of positive Ricci curvature with nilpotent isometry groups, Bull. Amer. Math. Soc. (N.S.) 19 (1988) 311-313.