Journal of Differential Geometry

The Dirac operator on hyperbolic manifolds of finite volume

Christian Bär

Full-text: Open access

Article information

Source
J. Differential Geom., Volume 54, Number 3 (2000), 439-488.

Dates
First available in Project Euclid: 24 June 2008

Permanent link to this document
https://projecteuclid.org/euclid.jdg/1214339790

Digital Object Identifier
doi:10.4310/jdg/1214339790

Mathematical Reviews number (MathSciNet)
MR1823312

Zentralblatt MATH identifier
1030.58021

Subjects
Primary: 58J50: Spectral problems; spectral geometry; scattering theory [See also 35Pxx]
Secondary: 53C27: Spin and Spin$^c$ geometry

Citation

Bär, Christian. The Dirac operator on hyperbolic manifolds of finite volume. J. Differential Geom. 54 (2000), no. 3, 439--488. doi:10.4310/jdg/1214339790. https://projecteuclid.org/euclid.jdg/1214339790


Export citation

References

  • [1] M. F. Atiyah and W. Schmid, A geometric construction of the discrete series for semisimple Lie groups, Invent. Math. 42 (1977) 1-62.
  • [2] M. F. Atiyah and W. Schmid, Erratum to the paper: A geometric construction of the discrete series for semisimple Lie groups, Invent. Math. 54 (1979) 189-192.
  • [3] P. D. Baier, Über den Diracoperator auf Mannigfaltigkeiten mit Zylinderenden, Diplomarbeit, Universität Freiburg, 1997.
  • [4] C. Bär, Metrics with harmonic spinors, Geom. Fune. Anal. 6 (1996) 899-942.
  • [5] R. Benedetti and C. Petronio, Lectures on hyperbolic geometry, Springer, Berlin, 1992.
  • [6] U. Bunke, The spectrum of the Dime operator on the hyperbolic space, Math. Nachr. 153 (1991) 179-190.
  • [7] R. Camporesi, The spinor heat kernel in maximally symmetric spaces, Comm. Math. Phys. 148 (1992) 283-308.
  • [8] R. Camporesi and A. Higuchi, On the eigenfunctions of the Dirac operator on spheres and real hyperbolic spaces, J. Geom. Phys. 20 (1996) 1-18.
  • [9] I. Chavel and J. Dodziuk, The spectrum of degenerating hyperbolic 3-manifolds, J. Differential Geom. 39 (1994) 123-137.
  • [10] B. Colbois and G. Courtois, Les valeurs propres inférieures à des surfaces de Riemann de petit rayon d'injectivité, Comment. Math. Helv. 64 (1989) 349-362.
  • [11] B. Colbois and G. Courtois, Convergence de variétés et convergence du spectre du Laplacien, Ann. Sci. École Norm. Sup. (4) 24 (1991) 507-518.
  • [12] J. Dodziuk and J. McGowan, The spectrum of the Hodge Laplacian for a degenerating family of hyperbolic three manifolds, Trans. Amer. Math. Soc. 347 (1995) 1981-1995.
  • [13] H. Donnelly, The differential form spectrum of hyperbolic space, Manuscr. Math. 33 (1980/81) 365-385.
  • [14] H. Donnelly and P. Li, Pure point spectrum and negative curvature for noncompact manifolds, Duke Math. J. 46 (1979) 497-503.
  • [15] N. Dunford and J. T. Schwartz, Linear operators, Part II, Interscience Publ., New York, London, Sydney, 1963.
  • [16] J. Eichhorn, Elliptic differential operators on noncompact manifolds, Seminar Analysis of the Karl-Weierstraß-Institute 1986/1987 (Leipzig) (B.-W. Schulze and H. Triebel, eds.), Teubner-Verlag, 1988, 4-169.
  • [17] S. Farinelli, Spectra of Dirac operators on a family of degenerating hyperbolic three manifolds, Dissertation ETH No. 12690, ETH Zürich, 1998.
  • [18] T. Friedrich, Zur Abhängigkeit des Dirac-Operators von der Spin-Struktur, Coli. Math. 48 (1984) 57-62.
  • [19] I. M. Glazman, Direct methods of qualitative spectral analysis of singular differential operators, Daniel Davey, New York, 1965.
  • [20] E. Heinz, Über das absolut stetige Spektrum singulärer Differentialgleichungssysteme, Nachr. Akad. Wiss. Göttingen II 1 (1982) 1-9.
  • [21] L. Ji and M. Zworski, The remainder estimate in spectral accumulation for degenerating hyperbolic surfaces, J. Fune. Anal. 114 (1993) 412-420.
  • [22] H. B. Lawson and M.-L. Michelsohn, Spin geometry, Princeton University Press, Princeton, 1989.
  • [23] A. Lichnerowicz, Spineurs harmoniques, C. R. Acad. Sci. Paris 257 (1963) 7-9.
  • [24] R. Mazzeo and R. S. Phillips, Hodge theory on hyperbolic manifolds, Duke Math. J. 60 (1990) 509-559.
  • [25] W. Müller, Manifolds with cusps of rank one, Springer, Lecture Notes in Math. 1244, Berlin, 1987.
  • [26] M. Reed and B. Simon, Methods of modern mathematical physics I: Functional analysis, Academic Press, Orlando, 1980.
  • [27] M. E. Taylor, Partial differential equations I, Springer, New York, Berlin, Heidelberg, 1996.
  • [28] W. P. Thurston, Three-dimensional geometry and topology, Princeton University Press, Princeton, 1997.
  • [29] A. Trautman, The Dirac operator on hypersurfaces, Acta Phys. Polon. B 26 (1995) 1283-1310.
  • [30] J. Weidmann, Oszillationsmethoden für Systeme gewöhnlicher Differentialgleichungen, Math. Z. 119 (1971) 349-373.
  • [31] J. Weidmann, Linear operators in Hilbert spaces, Springer-Verlag, New York, 1980.
  • [32] J. Weidmann, Absolut stetiges Spektrum bei Sturm-Liouville-Operatoren und Dirac- Systemen, Math. Z. 180 (1982) 423-427.