Journal of Differential Geometry

Mean Curvature Flows of Lagrangian Submanifolds with Convex Potentials

Knut Smoczyk and Mu-Tao Wang

Abstract

This article studies the mean curvature flow of Lagrangian submanifolds. In particular, we prove the following global existence and convergence theorem: if the potential function of a Lagrangian graph in T2n is convex, then the flow exists for all time and converges smoothly to a flat Lagrangian submanifold. We also discuss various conditions on the potential function that guarantee global existence and convergence.

Article information

Source
J. Differential Geom., Volume 62, Number 2 (2002), 243-257.

Dates
First available in Project Euclid: 27 July 2004

Permanent link to this document
https://projecteuclid.org/euclid.jdg/1090950193

Digital Object Identifier
doi:10.4310/jdg/1090950193

Mathematical Reviews number (MathSciNet)
MR1988504

Zentralblatt MATH identifier
1070.53042

Citation

Smoczyk, Knut; Wang, Mu-Tao. Mean Curvature Flows of Lagrangian Submanifolds with Convex Potentials. J. Differential Geom. 62 (2002), no. 2, 243--257. doi:10.4310/jdg/1090950193. https://projecteuclid.org/euclid.jdg/1090950193


Export citation