Journal of Differential Geometry

An Embedded Minimal Surface with no Symmetries

Martin Traizet

Abstract

We construct embedded minimal surfaces of finite total curvature in euclidean space by gluing catenoids and planes. We use Weierstrass Representation and we solve the Period Problem using the Implicit Function Theorem. As a corollary, we obtain the existence of minimal surfaces with no symmetries.

Article information

Source
J. Differential Geom., Volume 60, Number 1 (2002), 103-153.

Dates
First available in Project Euclid: 20 July 2004

Permanent link to this document
https://projecteuclid.org/euclid.jdg/1090351085

Digital Object Identifier
doi:10.4310/jdg/1090351085

Mathematical Reviews number (MathSciNet)
MR1924593

Zentralblatt MATH identifier
1054.53014

Citation

Traizet, Martin. An Embedded Minimal Surface with no Symmetries. J. Differential Geom. 60 (2002), no. 1, 103--153. doi:10.4310/jdg/1090351085. https://projecteuclid.org/euclid.jdg/1090351085


Export citation