Journal of Commutative Algebra

On $2$-stably isomorphic four-dimensional affine domains

Teruo Asanuma and Neena Gupta

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

In this paper, we exhibit examples of four-dimensional seminormal domains $A$ and $B$ which are finitely generated over the field $\mathbb{C} $ (or $\mathbb{R} $) such that $A[X,Y] \cong B[X,Y]$ but $A[X]\ncong B[X]$.

Article information

Source
J. Commut. Algebra, Volume 10, Number 2 (2018), 153-162.

Dates
First available in Project Euclid: 13 August 2018

Permanent link to this document
https://projecteuclid.org/euclid.jca/1534125822

Digital Object Identifier
doi:10.1216/JCA-2018-10-2-153

Zentralblatt MATH identifier
06917490

Subjects
Primary: 13B25: Polynomials over commutative rings [See also 11C08, 11T06, 13F20, 13M10] 13F20: Polynomial rings and ideals; rings of integer-valued polynomials [See also 11C08, 13B25] 13F45: Seminormal rings 14R10: Affine spaces (automorphisms, embeddings, exotic structures, cancellation problem)

Keywords
Cancelation problem stable isomorphism $K$-groups seminormal domain

Citation

Asanuma, Teruo; Gupta, Neena. On $2$-stably isomorphic four-dimensional affine domains. J. Commut. Algebra 10 (2018), no. 2, 153--162. doi:10.1216/JCA-2018-10-2-153. https://projecteuclid.org/euclid.jca/1534125822


Export citation

References

  • T. Asanuma, Non-invariant two dimensional affine domains, Math. J. Toyama Univ. 14 (1991), 167–175.
  • T. Asanuma, Non-linearizable algebraic $k^*$-actions on affine spaces, Invent. Math. 138 (1999), 281–306.
  • W. Danielewski, On a cancellation problem and automorphism groups of affine algebraic varieties, 1989, preprint.
  • Neena Gupta, On the cancellation problem for the affine space $\A^3$ in characteristic $p$, Invent. Math. 195 (2014), 279–288.
  • ––––, On Zariski's cancellation problem in positive characteristic, Adv. Math. 264 (2014), 296–307.
  • M. Hochster, Non-uniqueness of the ring of coefficients in a polynomial ring, Proc. Amer. Math. Soc. 34 (1972), 81–82.
  • Z. Jelonek, On the cancellation problem, Math. Annal. 344 (2009), 769–778.
  • M. Krusemeyer, Fundamental groups, algebraic $K$-theory, and a problem of Abhyankar, Invent. Math. 19 (1973), 15–47.
  • T.Y. Lam, Serre's problem on projective modules, Springer-Verlag, Berlin, 1996.
  • J. Milnor, Introduction to algebraic $K$-theory, Ann. Math. Stud. 72, Princeton University Press, Princeton, 1971.
  • M. Nagata, A theorem on finite generation of a ring, Nagoya Math. J. 27 (1966), 193–205.
  • C. Traverso, Seminormality and Picard group, Ann. Scuola Norm. Sup. 24 (1970), 585–595.
  • C. Weibel, The $K$-book: An introduction to algebraic $K$-theory, Grad. Stud. Math. 145 (2013).