Journal of Commutative Algebra

On a topological characterization of Prüfer $v$-multiplication domains among essential domains

Carmelo Antonio Finocchiaro and Francesca Tartarone

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

In this paper, we characterize the Pr\"ufer $v$-multiplication domain as a class of essential domains verifying an additional property on the closure of some families of prime ideals, with respect to the constructible topology.

Article information

Source
J. Commut. Algebra, Volume 8, Number 4 (2016), 513-536.

Dates
First available in Project Euclid: 27 October 2016

Permanent link to this document
https://projecteuclid.org/euclid.jca/1477600745

Digital Object Identifier
doi:10.1216/JCA-2016-8-4-513

Mathematical Reviews number (MathSciNet)
MR3566528

Zentralblatt MATH identifier
1360.13049

Subjects
Primary: 13A15: Ideals; multiplicative ideal theory 13A18: Valuations and their generalizations [See also 12J20] 13F05: Dedekind, Prüfer, Krull and Mori rings and their generalizations 54A20: Convergence in general topology (sequences, filters, limits, convergence spaces, etc.)

Keywords
Prüfer domain constructible topology essential domain ring of integer-valued polynomials

Citation

Finocchiaro, Carmelo Antonio; Tartarone, Francesca. On a topological characterization of Prüfer $v$-multiplication domains among essential domains. J. Commut. Algebra 8 (2016), no. 4, 513--536. doi:10.1216/JCA-2016-8-4-513. https://projecteuclid.org/euclid.jca/1477600745


Export citation

References

  • M.F. Atiyah and I.G. Macdonald, Introduction to commutative algebra, Addison-Wesley, Reading, 1969.
  • P.-J. Cahen and J.-L. Chabert, Integer-valued polynomials, Amer. Math. Soc. Surv. Mono. 48, Providence, 1997.
  • P.J. Cahen, A. Loper and F. Tartarone, Integer-valued polynomials and Prüfer $v$-multiplication domains, J. Algebra 226 (2000), 765–787.
  • J.-L. Chabert, Integer-valued polynomials, Prüfer domains, and localization, Proc. Amer. Math. Soc. 118 (1993), 1061–1073.
  • R. Engelking, General topology, Heldermann Verlag, Berlin, 1989.
  • C.A. Finocchiaro, Spectral spaces and ultrafilters, Comm. Algebra 42 (2014), 1496–1508.
  • C.A. Finocchiaro, M. Fontana and K.A. Loper, The constructible topology on spaces of valuation domains, Trans. Amer. Math. Soc. 365 (2013), 6199–6216.
  • M. Fontana, Topologically defined classes of commutative rings, Ann. Mat. Pura Appl. 123 (1980), 331–355.
  • M. Fontana and S. Gabelli, On the class group and the local class group of a pullback, J. Algebra 181 (1996), 803–835.
  • M. Fontana, E. Houston and T. Lucas, Toward a classification of prime ideals in Prüfer domains, Forum Math. 22 (2010), 741–766.
  • M. Fontana and A. Loper, The patch topology and the ultrafilter topology on the prime spectrum of a commutative ring, Comm. Algebra 36 (2008), 2917–2922.
  • ––––, Nagata rings, Kronecker function rings and related semistar operations, Comm. Algebra 31 (2003), 4775–4805.
  • S. Gabelli, On the Nagata's theorem for the class group, II, Lect. Notes Pure Appl. Math. 206 Dekker, New York, 1999.
  • R. Gilmer, Multiplicative ideal theory, Marcel Dekker, New York, 1972.
  • M. Griffin, Some results on $v$-multiplication rings, Canad. J. Math. 19 (1967), 710–722.
  • ––––, Rings of Krull type, J. reine angew. Math. 229 (1968), 1–27.
  • W. Heinzer and J. Ohm, An essential ring which is not a $v$-multiplication ring, Canad. J. Math. 25 (1973), 856–861.
  • ––––, Noetherian intersections of integral domains, Trans. Amer. Math. Soc. 167 (1972), 291–308.
  • P. Jaffard, Les Système d'Idéaux, Dunod, Paris, 1960.
  • B. Kang, Prüfer $v$-multiplication domains and the ring $R[X]_{N_v}$, J. Algebra 123 (1989), 151–170.
  • A. Loper, A classification of all $D$ such that $\mbox{\rm Int\,}(D)$ is a Prüfer domain, Proc. Amer. Math. Soc. 126 (1998), 657–660.
  • A. Loper and F. Tartarone, A classification of the integrally closed rings of polynomials containing $\SZ[X]$, J. Commutative Algebra 1 (2009), 51–91.
  • J. Mott and M. Zafrullah, On Prüfer $v$-multiplication domains, Manuscr. Math. 35 (1981), 1–26.
  • B. Olberding, Globalizing local properties of Prüfer domains, J. Algebra 205 (1998), 480–504.
  • ––––, Noetherian spaces of integrally closed rings with an application to intersections of valuation rings, Comm. Algebra 38 (2010), 3318–3332.
  • F. Tartarone, Integer-valued polynomials over Krull-type domains and Prüfer $v$-multiplication domains, Proc. Amer. Math. Soc. 128 (2000), 1617–1625.
  • M. Zafrullah, On finite conductor domains, Manuscr. Math. 24 (1978), 191–204.
  • M. Zafrullah, The $D+XD_S[X]$ construction from GCD-domains, J. Pure Appl. Alg. 50 (1988), 93–107.