Journal of Commutative Algebra

A Northcott type inequality for Buchsbaum-Rim coefficients

R. Balakrishnan and A.V. Jayanthan

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

In 1960, Northcott \cite {DGN} proved that, if $e_0(I)$ and $e_1(I)$ denote the 0th and first Hilbert-Samuel coefficients of an $\mathfrak m$-primary ideal $I$ in a Cohen-Macaulay local ring $(R,\mathfrak m)$, then $e_0(I)-e_1(I)\le \ell (R/I)$. In this article, we study an analogue of this inequality for Buchsbaum-Rim coefficients. We prove that, if $(R,\mathfrak m)$ is a two dimensional Cohen-Macaulay local ring and $M$ is a finitely generated $R$-module contained in a free module $F$ with finite co-length, then $\rm{br} _0(M)-\rm{br} _1(M)\le \ell (F/M)$, where $\rm{br} _0(M)$ and $\rm{br} _1(M$) denote 0th and 1st Buchsbaum-Rim coefficients, respectively.

Article information

Source
J. Commut. Algebra, Volume 8, Number 4 (2016), 493-512.

Dates
First available in Project Euclid: 27 October 2016

Permanent link to this document
https://projecteuclid.org/euclid.jca/1477600744

Digital Object Identifier
doi:10.1216/JCA-2016-8-4-493

Mathematical Reviews number (MathSciNet)
MR3566527

Zentralblatt MATH identifier
1358.13007

Subjects
Primary: 13A30: Associated graded rings of ideals (Rees ring, form ring), analytic spread and related topics 13D40: Hilbert-Samuel and Hilbert-Kunz functions; Poincaré series

Keywords
Buchsbaum-Rim function Buchsbaum-Rim polynomial Northcott inequality Rees algebra of modules

Citation

Balakrishnan, R.; Jayanthan, A.V. A Northcott type inequality for Buchsbaum-Rim coefficients. J. Commut. Algebra 8 (2016), no. 4, 493--512. doi:10.1216/JCA-2016-8-4-493. https://projecteuclid.org/euclid.jca/1477600744


Export citation

References

  • P.B. Bhattacharya, The Hilbert function of two ideals, Proc. Cambr. Philos. Soc. 53 (1957), 568–575.
  • J. Brennan, B. Ulrich and W.V. Vasconcelos, The Buchsbaum-Rim polynomial of a module, J. Algebra 241 (2001), 379–392.
  • D.A. Buchsbaum and D.S. Rim, A generalized Koszul complex II, Depth and multiplicity, Trans. Amer. Math. Soc. 111 (1964), 197–224.
  • F. Hayasaka and E. Hyry, A family of graded modules associated to a module, Comm. Algebra 36 2008, 4201–4217.
  • ––––, On the Buchsbaum-Rim function of a parameter module, J. Algebra 327 (2011), 307–315.
  • C. Huneke, Hilbert functions and symbolic powers, Michigan Math. J. 34 (1987), 293–318.
  • C. Huneke and I. Swanson, Integral closure of ideals, rings, and modules, Lond. Math. Soc. Lect. Notes 336, Cambridge University Press, Cambridge, 2006.
  • E. Hyry, The diagonal subring and the Cohen-Macaulay property of a multigraded ring, Trans. Amer. Math. Soc. 351 (1999), 2213–2232.
  • ––––, Cohen-Macaulay multi-Rees algebras, Comp. Math. 130 (2002), 319–343.
  • A.V. Jayanthan and J.K. Verma, Grothendieck-Serre formula and bigraded Cohen-Macaulay Rees algebra, J. Algebra 254 (2002), 1–20.
  • D. Katz and V. Kodiyalam, Symmetric powers of complete modules over a two dimensional regular local ring, Trans. Amer Math. Soc. 349 (1997), 747–762.
  • J.-C. Liu, Rees algebras of finitely generated torsion free modules over a two dimensional regular local ring, Comm. Algebra 26 (1998), 4015–4039.
  • D.G. Northcott, A note on the coefficients of the abstract Hilbert function, J. Lond. Math. Soc. 35 (1960), 209–214.
  • A. Ooishi, $\Delta$-genera and sectional genera of commutative rings, Hiroshima Math. J. 17 (1987), 361–372.
  • P. Roberts, Multiplicities and Chern characters in local algebra, Cambridge University Press, New York, 1998.
  • A. Simis, B. Ulrich and W. Vasconcelos, Rees algebras of modules, Proc. Lond. Math. Soc. 87 (2003), 610–646.
  • W. Vasconcelos, Integral closure: Rees algebra, multiplicities, algorithms, Springer Monographs in Mathematics, Springer Verlag, New York, 2005.
  • J.K. Verma, Joint reductions of complete ideals, Nagoya Math. J. 118 (1990), 155–163.