Journal of Commutative Algebra

On formal local cohomology modules with respect to a pair of ideals

T.H. Freitas and V.H. Jorge Pérez

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


We introduce a generalization of the formal local cohomology module, which we call a formal local cohomology module with respect to a pair of ideals, and study its various properties. We analyze their structure, upper and lower vanishing and non-vanishing properties. There are various exact sequences concerning formal cohomology modules, among them we have a Mayer-Vietoris sequence with respect to pair ideals. Also, we give another proof for a generalized version of the local duality theorems for Gorenstein, Cohen-Macaulay rings, and a generalization of the Grothendieck duality theorem for Gorenstein rings. We discuss the concept of formal grade with respect to a pair of ideals and give some results about this.

Article information

J. Commut. Algebra, Volume 8, Number 3 (2016), 337-366.

First available in Project Euclid: 9 September 2016

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 13D45: Local cohomology [See also 14B15]

Local cohomology formal local cohomology


Freitas, T.H.; Pérez, V.H. Jorge. On formal local cohomology modules with respect to a pair of ideals. J. Commut. Algebra 8 (2016), no. 3, 337--366. doi:10.1216/JCA-2016-8-3-337.

Export citation


  • M. Aghapournahr, KH. Ahmadi-Amoli and M.Y. Sadegui, The concept of $(I,J)$-Cohen-Macaulay modules, Journal of Algebraic Systems, accepted.
  • M. Asgharzadeh and K. Divaani-Aazar, Finiteness properties of formal local cohomology modules and Cohen- Macaulayness, Comm. Algebra 39 (2011), 1082–1103.
  • N. Bourbaki, Algébre commutative, Hermann, Paris, 1961–1965.
  • M.P. Brodmann and R.Y. Sharp, Local cohomology, An algebraic introduction with geometric applications, Cambridge University Press, Cambridge, 1998.
  • L. Chu and Q. Wang, Some results on local cohomology modules defined by a pair of ideals, J. Math. Kyoto Univ, 49 (2009), 193–200.
  • K. Divaani-Aazar, R. Naghipour and M. Tousi, Cohomological dimension of certain algebraic varieties, Proc. Amer. Math. Soc. 130 (2002), 3537–3544.
  • K. Divaani-Aazar and P. Schenzel, Ideal topology, local cohomology and connectedness, Math. Proc. Cambr. Philos. Soc. 131 (2001), 211–226.
  • M. Eghbali, On formal local cohomology, colocalization and endomorphism ring of top local cohomology modules, Ph.D. thesis, Universitat Halle-Wittenberg, 2011.
  • G. Faltings, Algebraization of some formal vector bundles, Ann. Math. 110 (1979), 501–514.
  • A. Grothendieck, Local cohomology, Notes by R. Hartshorne, Lect. Notes Math. 20, Springer, Berlin, 1966.
  • A. Grothendieck and J. Dieudonné, Éléments de géométrie algébrique III, Publ. Math. IHES 11 (1961).
  • J. Herzog, Komplexe, Auflsungen und Dualitt in der lokalen Algebra, Habilitationsschrift, Universität Regensburg, 1970.
  • C. Huneke, Problems on local cohomology, in Free resolutions in commutative algebra and algebraic geometry, Res. Notes Math. 2 (1992), 93–108.
  • S.B. Iyengar, G.J. Leuschke, A. Leykin, C. Miller, E. Miller, A.K. Singh and U. Walther, Twenty-four hours of local cohomology, Grad. Stud. Math. 87, American Mathematical Society, 2007.
  • A. Kianezhad, A.J. Taherizadeh and A. Tehranian, Formal local cohomology modules and serre subcategories, J. Sci. Kharazmi University 13 (2013), 337–346.
  • A. Mafi, Some results on the local cohomology modules, Arch. Math (Basel) 87 (2006), 211–216.
  • ––––, Results on formal local cohomology modules, Bull. Malays. Math. Sci. Soc. 36 (2013), 173–177.
  • C. Peskine and L. Szpiro, Dimension projective finie et cohomologie locale, Publ. Math. I.H.E.S. 42 (1972), 47–119.
  • P. Schenzel,On formal local cohomology and connectedness, J. Alg. 315 (2007), 897–923.
  • ––––, On the use of local cohomology in algebra and geometry, in Six lectures in commutative algebra, J. Elias, J.M. Giral, R.M. Miró-Roig and S. Zarzuela, eds., Progr. Math. 166, Birkhäuser, Berlin, 1998.
  • ––––, Proregular sequences, local cohomology, and completion, Math. Scand. 92 (2003), 161–180.
  • A. Tehranian and A.P.E Talemi, Non-Artinian local cohomology with respect to a pair of ideals, A Colloquium 20 (2013), 637–642.
  • T. Takahashi, Y. Yoshino and T. Yoshizawa, Local cohomology based on a nonclosed support defined by a pair of ideals, J. Pure Appl. Alg. 213 (2009), 582–600.
  • C.A. Weibel, An introduction to homological algebra, Cambridge University Press, Cambridge, 1994.