Open Access
2016 Polynomial overrings of $\mathrm{Int}(\mathbb Z)$
Jean-Luc Chabert, Giulio Peruginelli
J. Commut. Algebra 8(1): 1-28 (2016). DOI: 10.1216/JCA-2016-8-1-1

Abstract

We show that every polynomial overring of the ring $\mathrm{Int}(\mathbb Z)$ of polynomials which are integer-valued over $\mathbb Z$ may be considered as the ring of polynomials which are integer-valued over some subset of $\mathbb{\widehat Z}$, the profinite completion of $\mathbb Z$ with respect to the fundamental system of neighbourhoods of $0$ consisting of all non-zero ideals of $\mathbb Z$.

Citation

Download Citation

Jean-Luc Chabert. Giulio Peruginelli. "Polynomial overrings of $\mathrm{Int}(\mathbb Z)$." J. Commut. Algebra 8 (1) 1 - 28, 2016. https://doi.org/10.1216/JCA-2016-8-1-1

Information

Published: 2016
First available in Project Euclid: 28 March 2016

zbMATH: 1337.13019
MathSciNet: MR3482343
Digital Object Identifier: 10.1216/JCA-2016-8-1-1

Subjects:
Primary: 13B30 , 13F05 , 13F20 , 13F30

Keywords: integer-valued polynomial , irredundant representation , Overring , Prüfer domain

Rights: Copyright © 2016 Rocky Mountain Mathematics Consortium

Vol.8 • No. 1 • 2016
Back to Top