Journal of Commutative Algebra

Coset diagrams in the study of finitely presented groups with an application to quotients of the modular group

Anna Torstensson

Full-text: Open access

Article information

Source
J. Commut. Algebra, Volume 2, Number 4 (2010), 501-514.

Dates
First available in Project Euclid: 13 December 2010

Permanent link to this document
https://projecteuclid.org/euclid.jca/1292249709

Digital Object Identifier
doi:10.1216/JCA-2010-2-4-501

Mathematical Reviews number (MathSciNet)
MR2753720

Zentralblatt MATH identifier
1242.20037

Citation

Torstensson, Anna. Coset diagrams in the study of finitely presented groups with an application to quotients of the modular group. J. Commut. Algebra 2 (2010), no. 4, 501--514. doi:10.1216/JCA-2010-2-4-501. https://projecteuclid.org/euclid.jca/1292249709


Export citation

References

  • M.D.E. Conder, Generators for alternating and symmetric groups, J. London Math. Soc. 22 (1980), 75-86.
  • ––––, Group actions on graphs, maps and surfaces with maximum symmetry, in Groups St. Andrews $2001$ in Oxford. Vol. I, London Math. Soc. Lect. Note Ser. 304, Cambridge Univ. Press, Cambridge, 2003%, 63–91.
  • M.D.E. Conder, Three-relator quotients of the modular group, Quart. J. Math. Oxford 38 (1987), 427-447.
  • M.D.E. Conder, G. Martin and A. Torstensson, Maximal symmetry groups of hyperbolic $3$-manifolds, New Zealand J. Math. 35 (2006), 37-62.
  • B.J. Everitt, Alternating quotients of Fuchsian groups, J. Algebra 223 (2000), 457-476.
  • G. Higman and Q. Mushtaq, Coset diagrams and relations for $\rm PSL\,(2,\,\bf Z)$, Arab Gulf J. Sci. Res. 1 (1983), 159-164.
  • W. Magnus, A. Karrass and D. Solitar, Combinatorial group theory: Presentations of groups in terms of generators and relations, Interscience, New York, 1966.
  • C. Sims, Computation with finitely presented groups Cambridge University Press, Cambridge, 1994.
  • W.W. Stothers, Subgroups of the $(2,3,7)$ triangle group, Manuscr. Math. 20 (1977), 323-334.
  • T.A. Sudkamp, Languages and machines-An introduction to the theory of computer science, Addison-Wesley, Reading, Massachusetts, 1988.
  • T.W. Tucker, A refined Hurwitz theorem for imbeddings of irredundant Cayley graphs, J. Combin. Theory 36 (1984), 244-268.