Journal of Commutative Algebra

Idealization of a Module

D. D. Anderson and M. Winders

Full-text: Open access

Article information

Source
J. Commut. Algebra, Volume 1, Number 1 (2009), 3-56.

Dates
First available in Project Euclid: 15 December 2008

Permanent link to this document
https://projecteuclid.org/euclid.jca/1229376151

Digital Object Identifier
doi:10.1216/JCA-2009-1-1-3

Mathematical Reviews number (MathSciNet)
MR2462381

Zentralblatt MATH identifier
1194.13002

Subjects
Primary: 13A02: Graded rings [See also 16W50] 13A15: Ideals; multiplicative ideal theory 13B99: None of the above, but in this section

Keywords
Idealization trivial extension

Citation

Anderson, D. D.; Winders, M. Idealization of a Module. J. Commut. Algebra 1 (2009), no. 1, 3--56. doi:10.1216/JCA-2009-1-1-3. https://projecteuclid.org/euclid.jca/1229376151


Export citation

References

  • A.G. A\=gargün, D.D. Anderson and S. Valdes-Leon, Factorization in commutative rings with zero divisors, III, Rocky Mountain J. Math. 31 (2001), 1-21.
  • M.S. Ahn and D.D. Anderson, Weakly clean rings and almost clean rings, Rocky Mountain J. Math. 30 (2006), 783-798.
  • D.D. Anderson, Generalizations of Boolean rings, Boolean-like rings and von Neumann regular rings, Comment. Math. Univ. St. Paul. 35 (1986), 69-76.
  • --------, On a result of M. Martin concerning the number of generators of products of invertible ideals, Comm. Algebra 15 (1987), 1765-1768.
  • --------, Some remarks on multiplication ideals, II, Comm. Algebra 28 (2000), 2577-2583.
  • --------, Cancellation modules and related modules, in Ideal theoretic methods in commutative algebra, %(Columbia, MO, 1999) ( D.D. Anderson and I.J. Papick, eds., Lecture Notes Pure Appl. Math. 220, Marcel Dekker, New York, 2001%, pp. 13--25.
  • D.D. Anderson, D.F. Anderson and M. Zafrullah, Factorization in integral domains, J. Pure Appl. Algebra 69 (1990), 1-19.
  • D.D. Anderson, M. Axtell, S.J. Forman and J. Stickles, When are associates unit multiples?, Rocky Mountain J. Math. 34 (2004), 811-828.
  • D.D. Anderson and V. Camillo, Armendariz rings and Gaussian rings, Comm. Algebra 26 (1998), 2265-2272.
  • D.D. Anderson and R. Markanda, Unique factorization rings with zero divisors, Corrigendum, Houston J. Math. 11 (1985), 423-426.
  • D.D. Anderson and J. Matijevic, Graded $\pi $-rings, Canadian J. Math. 31 (1979), 449-457.
  • D.D. Anderson and J. Pascual, Regular ideals in commutative rings, sublattices of regular ideals, and Prüfer rings, J. Algebra 111 (1987), 404-426.
  • D.D. Anderson and E. Smith, Weakly prime ideals, Houston J. Math. 29 (2003), 831-840.
  • D.D. Anderson and S. Valdes-Leon, Factorization in commutative rings with zero divisors, Rocky Mountain J. Math. 26 (1996), 439-480.
  • --------, Factorization in commutative rings with zero divisors, II, in Factorization in integral domains, D.D. Anderson, ed., Lecture Notes Pure Appl. Math. 189, Marcel Dekker, New York, 1997%, pp. 197--219.
  • Y. Aoyama, Some basic results on canonical modules, J. Math. Kyoto Univ. 23 (1983), 85-94.
  • M. Axtell, $U$-factorizations in commutative rings with zero divisors, Comm. Algebra 30 (2002), 1241-1255.
  • M. Axtell, S. Forman, N. Roersma and J. Stickles, Properties of $U$-factorizations, Inter. J. Commut. Rings 2 (2003), 83-99.
  • R. B$\phi$gvad, Gorenstein rings with transcendental Poincaré-series, Math. Scand. 53 (1983), 5-15.
  • J. Clark, On a question of Faith in commutative endomorphism rings, Proc. Amer. Math. Soc. 98 (1986), 196-198.
  • D.L. Costa, Parameterizing families of non-Noetherian rings, Comm. Algebra 22 (1994), 3997-4011.
  • R. Damiano and J. Shapiro, Commutative torsion stable rings, J. Pure Appl. Algebra 32 (1984), 21-32.
  • C. Faith, Algebra: Rings, modules and categories I, Die Grundlehren der mathematischen Wissenschaften 190, Springer-Verlag, New York, 1973, corrected reprint 1981.
  • C.R. Fletcher, Unique factorization rings, Math. Proc. Cambridge Philos. Soc. 65 (1969), 579-583.
  • --------, The structure of unique factorization rings, Math. Proc. Cambridge Philos. Soc. 67 (1970), 535-540.
  • P.A. Froeschl, III, Chained rings, Pacific J. Math. 65 (1976), 47-53.
  • R. Gilmer, On Prüfer rings, Bull. Amer. Math. Soc. 78 (1972), 223-224.
  • --------, Multiplicative ideal theory, Queen's Papers Pure Appl. Math. 90, Queen's University, Kingston, Ontario, 1992.
  • S. Glaz, Commutative coherent rings, Lecture Notes Math. 1371, Springer-Verlag, Berlin, 1989.
  • S. Goto, Approximately Cohen-Macaulay rings, J. Algebra 76 (1982), 214-225.
  • \vbox --------, Maximal Buchsbaum modules over regular local rings and a structure theorem for generalized Cohen-Macaulay modules, Commutative Algebra Combinatorics%(Kyoto, 1985), Adv. Stud. Pure Math. 11, North-Holland, Amsterdam, 1987%, pp. 39--64.
  • S. Goto and S. Haraikawa, Good ideals in Artinian Gorenstein local rings obtained by idealization, Tokyo J. Math. 25 (2002), 493-499.
  • S. Goto, S.-I. Iai and M.-K. Kim, Good ideals in Gorenstein local rings obtained by idealization, Proc. Amer. Math. Soc. 130 (2002), 337-344.
  • T.H. Gulliksen, A change of ring theorem with applications to Poincaré series and intersection multiplicity, Math. Scand. 34 (1974), 167-183.
  • G. Hinkle, The generalized Kronecker function ring and the ring $R(X)$, dissertation, University of Missouri-Columbia, 1975.
  • G. Hinkle and J. Huckaba, The generalized Kronecker function ring and the ring $R(X)$, J. reine angew. Math. 292 (1977), 25-36.
  • J.A. Huckaba, Commutative rings with zero divisors, Monographs and Textbooks in Pure and Applied Mathematics 117, Marcel Dekker, Inc., New York, 1988.
  • S. Kabbaj and N. Mahdou, Trivial extensions of local rings and a conjecture of Costa, in Commutative ring theory and applications, %(Fez, 2001) M. Fontana, S. Kabbaj and S. Wiegand, eds., Lecture Notes Pure Appl. Math. 231, Marcel Dekker, New York, 2003%, pp. 301--311.
  • --------, Trivial extensions defined by coherent-like conditions, Comm. Algebra 32 (2004), 3937-3953.
  • I. Kaplansky, Commutative rings, revised ed., Polygonal Publishing House, Washington, N.J., 1994.
  • A. Lambert and T.G. Lucas, Nagata's principle of idealization in relation to module homomorphisms and conditional expectations, Kyungpook Math. J. 40 (2000), 327-337.
  • M.D. Larsen and P.J. McCarthy, Multiplicative theory of ideals, Academic Press, New York, 1971.
  • T. Lucas, The annihilator conditions property $(\rm A)$ and $(\rm A\;C)$, dissertation, University of Missouri-Columbia, 1983.
  • --------, Two annihilator conditions: Property $(\rm A)$ and $(\rm A\;C)$, Comm. Algebra 14 (1986), 557-580.
  • --------, Some results on Prüfer rings, Pacific J. Math. 124 (1986), 333-343.
  • N. Mahdou, On Costa's conjecture, Comm. Algebra 29 (2001), 2775-2785.
  • --------, Steinitz properties in trivial extensions of commutative rings, Arab. J. Sci. Eng.. C Theme Issues 26 (2001), Commutative Algebra, 119-125.
  • R. Matsuda, On Marot rings, Proc. Japan Acad. Math. Sci. 60 (1984), 134-137.
  • M. Nagata, Local rings, Interscience Publishers, New York, 1962.
  • W.K. Nicholson, Lifting idempotents and exchange rings, Trans. Amer. Math. Soc. 229 (1977), 269-278.
  • I. Palmér and J.-E. Roos, Explicit formulae for the global homological dimensions of trivial extensions of rings, J. Algebra 27 (1973), 380-413.
  • M.B. Rege and S. Chhawchharia, Armendariz rings, Proc. Japan Acad. Math. Sci. 73 (1997), 14-17.
  • I. Reiten, The converse to a theorem of Sharp on Gorenstein modules, Proc. Amer. Math. Soc. 32 (1972), 417-420.
  • J.-E. Roos, Finiteness conditions in commutative algebra and solution of a problem of Vasconcelos, Algebra: Durham 1981 (Durham, 1981), London Math. Soc. Lecture Note., vol. 72, Cambridge University Press, Cambridge, 1982%, pp. 179--203.
  • H. Sekiyama, Trivial extension of a commutative ring with balanced condition, Proc. 12th Symposium on Ring Theory %(Hokkaido Univ., Sapporo, 1979), Okayama Univ., Okayama, 1980%, pp. 1--8.
  • T.S. Shores and R. Wiegand, Rings whose finitely generated modules are direct sums of cyclics, J. Algebra 32 (1974), 152-172.
  • E. Valtonen, Some homological properties of commutative semitrivial ring extensions, Manus. Math. 63 (1989), 45-68.
  • K. Yamagishi, Idealizations of maximal Buchsbaum modules over a Buchsbaum ring, Math. Proc. Cambridge Philos. Soc. 104 (1988), 451-478.
  • P. Zanardo, On $v$-closed Manis valuation rings, Comm. Algebra 18 (1990), 775-788.
  • --------, Constructions of Manis valuation rings, Comm. Algebra 21 (1993), 4183-4194.