Journal of Applied Probability

On multiply monotone distributions, continuous or discrete, with applications

Claude Lefèvre and Stéphane Loisel

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

This paper is concerned with the class of distributions, continuous or discrete, whose shape is monotone of finite integer order t. A characterization is presented as a mixture of a minimum of t independent uniform distributions. Then, a comparison of t-monotone distributions is made using the s-convex stochastic orders. A link is also pointed out with an alternative approach to monotonicity based on a stationary-excess operator. Finally, the monotonicity property is exploited to reinforce the classical Markov and Lyapunov inequalities. The results are illustrated by several applications to insurance.

Article information

Source
J. Appl. Probab., Volume 50, Number 3 (2013), 827-847.

Dates
First available in Project Euclid: 5 September 2013

Permanent link to this document
https://projecteuclid.org/euclid.jap/1378401239

Digital Object Identifier
doi:10.1239/jap/1378401239

Mathematical Reviews number (MathSciNet)
MR3102517

Zentralblatt MATH identifier
1293.62028

Subjects
Primary: 62E10: Characterization and structure theory 60E15: Inequalities; stochastic orderings
Secondary: 62P05: Applications to actuarial sciences and financial mathematics 60E10: Characteristic functions; other transforms

Keywords
t-monotone function s-convex stochastic order stationary-excess operator Markov and Lyapunov inequalities insurance risk theory

Citation

Lefèvre, Claude; Loisel, Stéphane. On multiply monotone distributions, continuous or discrete, with applications. J. Appl. Probab. 50 (2013), no. 3, 827--847. doi:10.1239/jap/1378401239. https://projecteuclid.org/euclid.jap/1378401239


Export citation

References

  • Abramowitz, M. and Stegun, I. A. (eds) (1972). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, New York.
  • Asmussen, S. and Albrecher, H. (2010). Ruin Probabilities, 2nd edn. World Scientific, Hackensack, NJ.
  • Balabdaoui, F. and Wellner, J. A. (2007). Estimation of a $k$-monotone density: limit distribution theory and the spline connection. Ann. Statist. 35, 2536–2564.
  • Bertin, E. M. J., Cuculescu, I. and Theodorescu, R. (1997). Unimodality of Probability Measures. Kluwer, Dordrecht.
  • Constantinescu, C., Hashorva, E. and Ji, L. (2011). Archimedian copulas in finite and infinite dimensions–-with applications to ruin problems. Insurance Math. Econom. 49, 487–495.
  • Cox, D. R. (1962). Renewal Theory. John Wiley, New York.
  • De Jong, P. and Madan, D. B. (2011). Capital adequacy of financial enterprises. Working paper. Available at http://ssrn.com/abstract=1761107.
  • Denuit, M. and Lefèvre, C. (1997). Some new classes of stochastic order relations among arithmetic random variables, with applications in actuarial sciences. Insurance Math. Econom. 20, 197–213.
  • Denuit, M., De Vylder, E. and Lefèvre, C. (1999a). Extremal generators and extremal distributions for the continuous $s$-convex stochastic orderings. Insurance Math. Econom. 24, 201–217.
  • Denuit, M., Lefèvre, C. and Mesfioui, M. (1999b). On $s$-convex stochastic extrema for arithmetic risks. Insurance Math. Econom. 25, 143–155.
  • Denuit, M., Lefèvre, C. and Shaked, M. (1998). The $s$-convex orders among real random variables, with applications. Math. Inequal. Appl. 1, 585–613.
  • Denuit, M., Lefèvre, C. and Shaked, M. (2000). Stochastic convexity of the Poisson mixture model. Methodology Comput. Appl. Prob. 2, 231–254.
  • Denuit, M., Lefèvre, C. and Utev, S. (1999c). Generalized stochastic convexity and stochastic orderings of mixtures. Prob. Eng. Inf. Sci. 13, 275–291.
  • Dharmadhikari, S. and Joag-Dev, K. (1988). Unimodality, Convexity, and Applications. Academic Press, Boston, MA.
  • Feller, W. (1971). An Introduction to Probability Theory and Its Applications, Vol. II, 2nd edn. John Wiley, New York.
  • Furman, E. and Zitikis, R. (2009). Weighted pricing functionals with applications to insurance: an overview. N. Amer. Actuarial J. 13, 483–496.
  • Gerber, H. U. (1972). Ein satz von Khintchin und die varianz von unimodalen. Bull. Swiss Assoc. Actuaries, 225–231.
  • Gneiting, T. (1999). Radial positive definite functions generated by Euclid's hat. J. Multivariate Anal. 69, 88–119.
  • Goovaerts, M. J., Kaas, R., Dhaene, J. and Tang, Q. (2003). A unified approach to generate risk measures. ASTIN Bull. 33, 173–192.
  • Goovaerts, M. J., Kaas, R., Van Heerwaarden, A. E. and Bauwelinckx, T. (1990). Effective Actuarial Methods. North-Holland, Amsterdam.
  • Kaas, R. and Goovaerts, M. J. (1987). Unimodal distributions in insurance. Bull. Assoc. R. Actuaires Belges 81, 61–66.
  • Kaas, R., van Heerwaarden, A. E. and Goovaerts, M. J. (1994). Ordering of Actuarial Risks. CAIRE, Brussels.
  • Kaas, R., Goovaerts, M. J., Dhaene, J. and Denuit, M. (2008). Modern Actuarial Risk Theory: Using R. Springer, Heidelberg.
  • Karlin, S. and Studden, W. J. (1966). Tchebycheff Systems: With Applications in Analysis and Statistics. John Wiley, New York.
  • Lefèvre, C. and Loisel, S. (2010). Stationary-excess operator and convex stochastic orders. Insurance Math. Econom. 47, 64–75.
  • Lefèvre, C. and Utev, S. (1996). Comparing sums of exchangeable Bernoulli random variables. J. Appl. Prob. 33, 285–310.
  • Lefèvre, C. and Utev, S. (2013). Convolution property and exponential bounds for symmetric monotone densities. ESAIM Prob. Statist. 17, 605–613.
  • Lévy, P. (1962). Extensions d'un théorème de D. Dugué et M. Girault. Z. Wahrscheinlichkeitsth. 1, 159–173.
  • Pakes, A. G. (1996). Length biasing and laws equivalent to the log-normal. J. Math. Anal. Appl. 197, 825–854.
  • Pakes, A. G. (1997). Characterization by invariance under length-biasing and random scaling. J. Statist. Planning Infer. 63, 285–310.
  • Pakes, A. G. (2003). Biological applications of branching processes. In Stochastic Processes: Modelling and Simulation (Handbook Statist. 21), eds D. N. Shanbhag and C. R. Rao, North-Holland, Amsterdam, pp. 693–773.
  • Pakes, A. G. and Navarro, J. (2007). Distributional characterizations through scaling relations. Austral. N. Ze. J. Statist. 49, 115–135.
  • Patil, G. P. and Rao, C. R. (1978). Weighted distributions and size-biased sampling with applications to wildlife populations and human families. Biometrics 34, 179–189.
  • Pečarić, J. E., Proschan, F. and Tong, Y. L. (1992). Convex Functions, Partial Orderings, and Statistical Applications. Academic Press, Boston, MA.
  • Shaked, M. and Shanthikumar, J. G. (2007). Stochastic Orders. Springer, New York.
  • Steutel, F. W. and van Harn, K. (1979). Discrete analogues of self-decomposability and stability. Ann. Prob. 7, 893–899.
  • Williamson, R. E. (1956). Multiply monotone functions and their Laplace transforms. Duke Math. J. 23, 189–207. \endharvreferences