## Journal of Applied Probability

- J. Appl. Probab.
- Volume 49, Number 3 (2012), 601-611.

### Birth of a strongly connected giant in an inhomogeneous random digraph

Mindaugas Bloznelis, Friedrich Götze, and Jerzy Jaworski

#### Abstract

We present and investigate a general model for inhomogeneous random digraphs with labeled vertices, where the arcs are generated independently, and the probability of inserting an arc depends on the labels of its endpoints and on its orientation. For this model, the critical point for the emergence of a giant component is determined via a branching process approach.

#### Article information

**Source**

J. Appl. Probab., Volume 49, Number 3 (2012), 601-611.

**Dates**

First available in Project Euclid: 6 September 2012

**Permanent link to this document**

https://projecteuclid.org/euclid.jap/1346955320

**Digital Object Identifier**

doi:10.1239/jap/1346955320

**Mathematical Reviews number (MathSciNet)**

MR3012086

**Zentralblatt MATH identifier**

1252.05196

**Subjects**

Primary: 05C80: Random graphs [See also 60B20]

Secondary: 90B15: Network models, stochastic 60J85: Applications of branching processes [See also 92Dxx]

**Keywords**

Inhomogeneous digraph phase transition giant component

#### Citation

Bloznelis, Mindaugas; Götze, Friedrich; Jaworski, Jerzy. Birth of a strongly connected giant in an inhomogeneous random digraph. J. Appl. Probab. 49 (2012), no. 3, 601--611. doi:10.1239/jap/1346955320. https://projecteuclid.org/euclid.jap/1346955320