Journal of Applied Probability

Small-time asymptotics of option prices and first absolute moments

Johannes Muhle-Karbe and Marcel Nutz

Full-text: Access denied (no subscription detected) We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

We study the leading term in the small-time asymptotics of at-the-money call option prices when the stock price process S follows a general martingale. This is equivalent to studying the first centered absolute moment of S. We show that if S has a continuous part, the leading term is of order √T in time T and depends only on the initial value of the volatility. Furthermore, the term is linear in T if and only if S is of finite variation. The leading terms for pure-jump processes with infinite variation are between these two cases; we obtain their exact form for stable-like small jumps. To derive these results, we use a natural approximation of S so that calculations are necessary only for the class of Lévy processes.

Article information

Source
J. Appl. Probab. Volume 48, Number 4 (2011), 1003-1020.

Dates
First available in Project Euclid: 16 December 2011

Permanent link to this document
https://projecteuclid.org/euclid.jap/1324046015

Digital Object Identifier
doi:10.1239/jap/1324046015

Mathematical Reviews number (MathSciNet)
MR2896664

Zentralblatt MATH identifier
1229.91321

Subjects
Primary: 91B25: Asset pricing models
Secondary: 60G44: Martingales with continuous parameter

Keywords
Option price absolute moment small-time asymptotics approximation by Lévy processes

Citation

Muhle-Karbe, Johannes; Nutz, Marcel. Small-time asymptotics of option prices and first absolute moments. J. Appl. Probab. 48 (2011), no. 4, 1003--1020. doi:10.1239/jap/1324046015. https://projecteuclid.org/euclid.jap/1324046015.


Export citation

References

  • Abramowitz, M. and Stegun, I. A. (1964). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. US Government Printing Office, Washington, DC.
  • Alòs, E., Léon, J. A. and Vives, J. (2007). On the short-time behavior of the implied volatility for jump-diffusion models with stochastic volatility. Finance Stoch. 11, 571–589.
  • Andersen, L. B. G. and Piterbarg, V. V. (2007). Moment explosions in stochastic volatility models. Finance Stoch. 11, 29–50.
  • Barndorff-Nielsen, O. E. and Stelzer, R. (2005). Absolute moments of generalized hyperbolic distributions and approximate scaling of normal inverse Gaussian Lévy processes. Scand. J. Statist. 32, 617–637.
  • Berestycki, H., Busca, J. and Florent, I. (2002). Asymptotics and calibration of local volatility models. Quant. Finance 2, 61–69.
  • Berestycki, H., Busca, J. and Florent, I. (2004). Computing the implied volatility in stochastic volatility models. Commun. Pure Appl. Math. 57, 1352–1373.
  • Carr, P. and Wu, L. (2003). What type of process underlies options? A simple robust test. J. Finance 58, 2581–2610.
  • Cont, R. and Tankov, P. (2004). Financial Modelling with Jump Processes. Chapman & Hall/CRC, Boca Raton, FL.
  • Cox, J. C., Ingersoll, J. E., Jr. and Ross, S. A. (1985). A theory of the term structure of interest rates. Econometrica 53, 385–407.
  • Durrleman, V. (2008). Convergence of at-the-money implied volatilities to the spot volatility. J. Appl. Prob. 45, 542–550.
  • Durrleman, V. (2010). From implied to spot volatilities. Finance Stoch. 14, 157–177.
  • Feng, J., Forde, M. and Fouque, J.-P. (2010). Short-maturity asymptotics for a fast mean-reverting Heston stochastic volatility model. SIAM J. Financial Math. 1, 126–141.
  • Figueroa-López, J. E. and Forde, M. (2011). The small-maturity smile for exponential Lévy models. To appear in SIAM J. Financial Math. Available at http://arxiv.org/abs/1105.3180v1.
  • Forde, M. (2009). Small-time asymptotics for a general local-stochastic volatility model, using the heat kernel expansion. Preprint.
  • Forde, M. and Jacquier, A. (2009). Small-time asymptotics for implied volatility under the Heston model. Internat. J. Theoret. Appl. Finance 12, 861–876.
  • Forde, M., Jacquier, A. and Lee, R. (2011). The small-time smile and term structure of implied volatility under the Heston model. Preprint.
  • Gatheral, J., Hsu, E. P., Laurence, P. M., Ouyang, C. and Wang, T.-H. (2011). Asymptotics of implied volatility in local volatility models. To appear in Math. Finance.
  • Jacod, J. (1979). Calcul Stochastique et Problèmes de Martingales (Lecture Notes Math. 714). Springer, Berlin.
  • Jacod, J. (2007). Asymptotic properties of power variations of Lévy processes. ESAIM Prob. Statist. 11, 173–196.
  • Jacod, J. and Shiryaev, A. N. (2003). Limit Theorems for Stochastic Processes, 2nd edn. Springer, Berlin.
  • Luschgy, H. and Pagès, G. (2008). Moment estimates for Lévy processes. Electron. Commun. Prob. 13, 422–434.
  • Medvedev, A. and Scaillet, O. (2007). Approximation and calibration of short-term implied volatilities under jump-diffusion stochastic volatility. Rev. Financial Studies 20, 427–459.
  • Protter, P. E. (2005). Stochastic Integration and Differential Equations, 2nd edn. Springer, Berlin.
  • Roper, M. (2008). Implied volatility explosions: European calls and implied volatilities close to expiry in exponential Lévy models. Preprint.
  • Samorodnitsky, G. and Taqqu, M. S. (1994). Stable Non-Gaussian Random Processes. Chapman & Hall, New York.
  • Sato, K.-I. (1999). Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press.
  • Tankov, P. (2010). Pricing and hedging in exponential Lévy models: Review of recent results. In Paris-Princeton Lectures on Mathematical Finance 2010 (Lecture Notes Math. 2003), Springer, Berlin, pp. 319–359.