Journal of Applied Mathematics

Existence for Certain Systems of Nonlinear Fractional Differential Equations

Zhaowen Zheng, Xiujuan Zhang, and Jing Shao

Full-text: Open access

Abstract

By establishing a comparison result and using the monotone iterative technique, combining with the method of upper and lower solutions, the existence of solutions for systems of nonlinear fractional differential equations is considered. An example is given to demonstrate the applicability of our results.

Article information

Source
J. Appl. Math., Volume 2014 (2014), Article ID 376924, 6 pages.

Dates
First available in Project Euclid: 2 March 2015

Permanent link to this document
https://projecteuclid.org/euclid.jam/1425305661

Digital Object Identifier
doi:10.1155/2014/376924

Zentralblatt MATH identifier
07010615

Citation

Zheng, Zhaowen; Zhang, Xiujuan; Shao, Jing. Existence for Certain Systems of Nonlinear Fractional Differential Equations. J. Appl. Math. 2014 (2014), Article ID 376924, 6 pages. doi:10.1155/2014/376924. https://projecteuclid.org/euclid.jam/1425305661


Export citation

References

  • A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, vol. 204 of North-Holland Mathematics Studies, Elsevier Science, Amsterdam, The Netherlands, 2006.
  • V. Lakshmikantham, S. Leela, and J. Vasundhara, Theory of Fractional Dynamic Systems, vol. 11 of Systems of Nonlinear Fractional Differential Equations, Cambridge Academic Publishers, Cambridge, UK, 2009.
  • I. Podlubny, Fractional Differential Equations, vol. 198 of Mathematics in Science and Engineering, Academic Press, San Diego, Calif, USA, 1999.
  • T. Jankowski, “Fractional equations of Volterra type involving a Riemann-Liouville derivative,” Applied Mathematics Letters, vol. 26, no. 3, pp. 344–350, 2013.
  • X. Su, “Boundary value problem for a coupled system of nonlinear fractional differential equations,” Applied Mathematics Letters, vol. 22, no. 1, pp. 64–69, 2009.
  • F. A. McRae, “Monotone iterative technique and existence results for fractional differential equations,” Nonlinear Analysis: Theory, Methods & Applications, vol. 71, no. 12, pp. 6093–6096, 2009.
  • J. D. Ramírez and A. S. Vatsala, “Monotone iterative technique for fractional differential equations with periodic boundary conditions,” Opuscula Mathematica, vol. 29, no. 3, pp. 289–304, 2009.
  • G. Wang, “Monotone iterative technique for boundary value problems of a nonlinear fractional differential equation with deviating arguments,” Journal of Computational and Applied Mathematics, vol. 236, no. 9, pp. 2425–2430, 2012.
  • G. Wang, R. P. Agarwal, and A. Cabada, “Existence results and the monotone iterative technique for systems of nonlinear fractional differential equations,” Applied Mathematics Letters, vol. 25, no. 6, pp. 1019–1024, 2012.
  • Z. Wei, Q. Li, and J. Che, “Initial value problems for fractional differential equations involving Riemann-Liouville sequential fractional derivative,” Journal of Mathematical Analysis and Applications, vol. 367, no. 1, pp. 260–272, 2010.
  • S. Zhang, “Monotone iterative method for initial value problem involving Riemann-Liouville fractional derivatives,” Nonlinear Analysis: Theory, Methods & Applications, vol. 71, no. 5-6, pp. 2087–2093, 2009.
  • V. Lakshmikantham and A. S. Vatsala, “Theory of fractional differential inequalities and applications,” Communications in Applied Analysis, vol. 11, no. 3-4, pp. 395–402, 2007. \endinput