Journal of Applied Mathematics

  • J. Appl. Math.
  • Volume 2014, Special Issue (2014), Article ID 353765, 8 pages.

Existence of Periodic Fixed Point Theorems in the Setting of Generalized Quasi-Metric Spaces

Chi-Ming Chen, Erdal Karapınar, and Vladimir Rakočević

Full-text: Open access

Abstract

We introduce the notions of (α-ϕ-ψ)-weaker Meir-Keeler contractive mappings and (α-φ)-stronger Meir-Keeler contractive mappings. We discuss the existence of periodic points in the setting of generalized quasi-metric spaces. Our results improve, extend, and generalize several results in the literature.

Article information

Source
J. Appl. Math., Volume 2014, Special Issue (2014), Article ID 353765, 8 pages.

Dates
First available in Project Euclid: 1 October 2014

Permanent link to this document
https://projecteuclid.org/euclid.jam/1412177962

Digital Object Identifier
doi:10.1155/2014/353765

Mathematical Reviews number (MathSciNet)
MR3256309

Citation

Chen, Chi-Ming; Karapınar, Erdal; Rakočević, Vladimir. Existence of Periodic Fixed Point Theorems in the Setting of Generalized Quasi-Metric Spaces. J. Appl. Math. 2014, Special Issue (2014), Article ID 353765, 8 pages. doi:10.1155/2014/353765. https://projecteuclid.org/euclid.jam/1412177962


Export citation

References

  • I.-J. Lin, C.-M. Chen, and E. Karap\inar, “Periodic points of weaker meir-keeler contractive mappings on generalized quasimetric spaces,” Abstract and Applied Analysis, vol. 2014, Article ID 490450, 6 pages, 2014.
  • A. Branciari, “A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces,” Publicationes Mathematicae Debrecen, vol. 57, no. 1-2, pp. 31–37, 2000.
  • T. Suzuki, “Generalized metric spaces do not have the compatible topology,” Abstract and Applied Analysis, vol. 2014, Article ID 458098, 5 pages, 2014.
  • E. Karap\inar and H. Lakzian, “($\alpha $ – $\psi $)-contractive mappings on generalized quasi-metric spaces,” Journal of Function Spaces, vol. 2014, Article ID 914398, 7 pages, 2014.
  • M. Jleli and B. Samet, “The Kannan's fixed point theorem in a cone rectangular metric spacečommentComment on ref. [15?]: We deleted reference [18] in the original manuscript, which was a repetition of [15?]. Please check.,” Journal of Nonlinear Science and its Applications, vol. 2, no. 3, pp. 161–167, 2009.
  • W. A. Kirk and N. Shahzad, “Generalized metrics and Caristi's theorem,” Fixed Point Theory and Applications, vol. 2013, article 129, 9 pages, 2013.
  • E. Karap\inar, “Discussion on ($\alpha $,$\psi $) contractions on generalized metric spaces,” Abstract and Applied Analysis, vol. 2014, Article ID 962784, 7 pages, 2014.
  • Z. Kadeburg and S. Radenovic, “On generalized metric spaces: a survey,” TWMS Journal of Pure and Applied Mathematics, vol. 5, no. 1, pp. 3–13, 2014.
  • H. Aydi, E. Karap\inar, and B. Samet, “Fixed points for generalized $\left(\alpha ,\psi \right)$-contractions on generalized metric spaces,” Journal of Inequalities and Applications, vol. 2014, article 229, 2014.
  • I. R. Sarma, J. M. Rao, and S. S. Rao, “Contractions over generalized metric spaces,” Journal of Nonlinear Science and Its Applications, vol. 2, no. 3, pp. 180–182, 2009.
  • A. Azam and M. Arshad, “Kannan fixed point theorem on generalized metric spaces,” Journal of Nonlinear Sciences and Its Applications, vol. 1, no. 1, pp. 45–48, 2008.
  • P. Das, “A fixed point theorem on a class of generalized metric spaces,” Korean Journal of Mathematical Sciences, vol. 9, pp. 29–33, 2002.
  • I. M. Erhan, E. Karap\inar, and T. Sekulic, “Fixed points of $(\psi ,\varphi )$ contractions on rectangular metric spaces,” Fixed Point Theory and Applications, vol. 2012, article 138, 2012.
  • D. Mihet, “On Kannan fixed point principle in generalized metric spaces,” Journal of Nonlinear Science and Its Applications, vol. 2, no. 2, pp. 92–96, 2009.
  • B. Samet, “A fixed point theorem in a generalized metric space for mappings satisfying a contractive condition of integral type,” International Journal of Mathematical Analysis, vol. 6, no. 3, pp. 1265–1271, 2009.
  • B. Samet, “Discussion on: a fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces,” Publicationes Mathematicae Debrecen, vol. 76, no. 4, pp. 493–494, 2010.
  • H. Lakzian and B. Samet, “Fixed points for $(\psi ,\varphi )$-weakly contractive mappings in generalized metric spaces,” Applied Mathematics Letters, vol. 25, no. 5, pp. 902–906, 2012.
  • A. Meir and E. Keeler, “A theorem on contraction mappings,” Journal of Mathematical Analysis and Applications, vol. 28, pp. 326–329, 1969.
  • B. Samet, C. Vetro, and P. Vetro, “Fixed point theorems for $\alpha-\psi $-contractive type mappings,” Nonlinear Analysis: Theory, Methods & Applications, vol. 75, no. 4, pp. 2154–2165, 2012. \endinput