Journal of Applied Mathematics

  • J. Appl. Math.
  • Volume 2013, Special Issue (2013), Article ID 327297, 9 pages.

The Fractal Dimension of River Length Based on the Observed Data

Ni Zhihui, Wu Lichun, Wang Ming-hui, Yi Jing, and Zeng Qiang

Full-text: Open access


Although the phenomenon that strictly meets the constant dimension fractal form in the nature does not exist, fractal theory provides a new way and means for the study of complex natural phenomena. Therefore, we use some variable dimension fractal analysis methods to study river flow discharge. On the basis of the flood flow corresponding to the waterline length, the river of the overall and partial dimensions are calculated and the relationships between the overall and partial dimensions are discussed. The law of the length in section of Chongqing city of Yangtze River is calibrated by using of variable fractal dimension. The results conclude that it does express a second-order accumulated variable-dimensional fractal phenomenon, and the dimension can reflect the degree of the river; the greater dimension, the more the river bend. It has different dimensions at a different location in the same river. In the same river, the larger dimension, the worse flow discharge capacity of the river and the more obvious of the flood will be on the performance.

Article information

J. Appl. Math., Volume 2013, Special Issue (2013), Article ID 327297, 9 pages.

First available in Project Euclid: 7 May 2014

Permanent link to this document

Digital Object Identifier

Zentralblatt MATH identifier


Zhihui, Ni; Lichun, Wu; Ming-hui, Wang; Jing, Yi; Qiang, Zeng. The Fractal Dimension of River Length Based on the Observed Data. J. Appl. Math. 2013, Special Issue (2013), Article ID 327297, 9 pages. doi:10.1155/2013/327297.

Export citation


  • S. Lovejoy and D. Schertzer, “Scale invariance, symmetries, fractals and stochastic simulations of atmospheric phenomena,” Bulletin of the American Meteorological Society, vol. 67, no. 1, pp. 21–32, 1986.
  • Y. Y. Kagan and L. Knopoff, “Stochastic synthesis of earthquake catalogs,” Journal of Geophysical Research, vol. 86, no. B4, pp. 2853–2862, 1981.
  • D. Marsan, C. J. Bean, S. Steacy, and J. McCloskey, “Spatio-temporal analysis of stress diffusion in a mining-induced seismicity system,” Geophysical Research Letters, vol. 26, no. 24, pp. 3697–3700, 1999.
  • D. Kiyashchenko, N. Smirnova, V. Troyan, and F. Vallianatos, “Dynamics of multifractal and correlation characteristics of the spatio-temporal distribution of regional seismicity before the strong earthquakes,” Natural Hazards and Earth System Science, vol. 3, no. 3-4, pp. 285–298, 2003.
  • M. C. Robertson, C. G. Sammis, M. Sahimi, and A. J. Martin, “Fractal analysis of three-dimensional spatial distributions of earthquakes with a percolation interpretation,” Journal of Geophysical Research, vol. 100, no. B1, pp. 609–620, 1995.
  • Y. Ashkenazy, D. R. Baker, H. Gildor, and S. Havlin, “Nonlinearity and multifractality of climate change in the past 420,000 years,” Geophysical Research Letters, vol. 30, no. 22, 2003.
  • D. Schertzer, S. Lovejoy, F. Schmitt, Y. Chigirinskaya, and D. Marsan, “Multifractal cascade dynamics and turbulent intermittency,” Fractals, vol. 5, no. 3, pp. 427–471, 1997.
  • P. Hubert, Y. Tessier, S. Lovejoy et al., “Multifractals and extreme rainfall events,” Geophysical Research Letters, vol. 20, no. 10, pp. 931–934, 1993.
  • P. A. Varotsos, N. V. Sarlis, E. S. Skordas, and M. S. Lazaridou, “Fluctuations, under time reversal, of the natural time and the entropy distinguish similar looking electric signals of different dynamics,” Journal of Applied Physics, vol. 103, no. 1, Article ID 014906, 2008.
  • N. Scafetta and B. J. West, “Phenomenological reconstructions of the solar signature in the Northern Hemisphere surface temperature records since 1600,” Journal of Geophysical Research, vol. 112, no. D24, 2007.
  • Y. Ida, M. Hayakawa, A. Adalev, and K. Gotoh, “Multifractal analysis for the ULF geomagnetic data during the 1993 Guam earthquake,” Nonlinear Processes in Geophysics, vol. 12, no. 2, pp. 157–162, 2005.
  • P. A. Varotsos, N. V. Sarlis, E. S. Skordas, H. K. Tanaka, and M. S. Lazaridou, “Attempt to distinguish long-range temporal correlations from the statistics of the increments by natural time analysis,” Physical Review E, vol. 74, no. 2, Article ID 021123, 2006.
  • L. Olsen, “Multifractal analysis of divergence points of deformed measure theoretical Birkhoff averages. IV. Divergence points and packing dimension,” Bulletin des Sciences Mathématiques, vol. 132, no. 8, pp. 650–678, 2008.
  • Z. H. Ni, X. J. Zhang, and R. S. Xu, “Fractal study on the vertical concentration distribution of sediment flow in Yangtze River and Yellow River,” Yangtze River, vol. 42, no. 19, pp. 73–76, 2011 (Chinese).
  • D. Jou, M. S. Mongiov, M. Sciacca, and C. F. Barenghi, “Vortex length, vortex energy and fractal dimension of superfluid turbulence at very low temperature,” Journal of Physics A, vol. 43, no. 20, Article ID 205501, pp. 1–10, 2010.
  • V. I. Nikora, “Fractal structures of river plan forms,” Water Resources Research, vol. 27, no. 6, pp. 1327–1333, 1991.
  • P. La Barbera and R. Rosso, “On the fractal dimension of stream networks,” Water Resources Research, vol. 25, no. 4, pp. 735–741, 1989.
  • V. K. Gupta and E. Waymire, “Statistical self-similarity in river networks parameterized by elevation,” Water Resources Research, vol. 25, no. 3, pp. 463–476, 1989.
  • A. Robert and A. G. Roy, “On the fractal interpretation of the mainstream length-drainage area relationship,” Water Resources Research, vol. 26, no. 5, pp. 839–842, 1990.
  • D. G. Tarboton, R. L. Bras, and I. Rodriguez-Iturbe, “A physical basis for drainage density,” Geomorphology, vol. 5, no. 1-2, pp. 59–76, 1992.
  • Z. H. Ni, Z. Y. Song, X. J. Zhang, L. C. Wu, and J. Yi, “A modification to vertical distribution of tidal flow Reynolds stress in shallow sea,” China Ocean Engineering, vol. 26, no. 3, pp. 431–442, 2012.
  • W. Kinsner, “A unified approach to fractal dimensions,” International Journal of Cognitive Informatics and Natural Intelligence, vol. 1, no. 4, pp. 26–46, 2007.
  • M. Sadegh Movahed and E. Hermanis, “Fractal analysis of river flow fluctuations,” Physica A, vol. 387, no. 4, pp. 915–932, 2008.
  • B. B. Mandelbrot and J. R. Wallis, “Some long-run properties of geophysical records,” Water Resources Research, vol. 5, no. 2, pp. 321–340, 1969.
  • P. Burlando and R. Rosso, “Scaling and multiscaling models of depth-duration-frequency curves for storm precipitation,” Journal of Hydrology, vol. 187, no. 1-2, pp. 45–64, 1996.
  • C. Matsoukas, S. Islam, and I. Rodriguez-Iturbe, “Detrended fluctuation analysis of rainfall and streamflow time series,” Journal of Geophysical Research, vol. 105, no. D23, pp. 29165–29172, 2000.
  • G. Pandey, S. Lovejoy, and D. Schertzer, “Multifractal analysis of daily river flows including extremes for basins of five to two million square kilometres, one day to 75 years,” Journal of Hydrology, vol. 208, no. 1-2, pp. 62–81, 1998.
  • Y. H. Fu, “Fractal dimension and fractals in ocean engineering,” China Ocean Engineering, vol. 8, no. 3, pp. 285–292, 1994.