Journal of Applied Mathematics

  • J. Appl. Math.
  • Volume 2013, Special Issue (2013), Article ID 792507, 11 pages.

Analysis and Control of Epileptiform Spikes in a Class of Neural Mass Models

Xian Liu, Qing Gao, Baiwang Ma, Jiajia Du, and Wenju Ren

Full-text: Open access

Abstract

The problem of analyzing and controlling epileptiform spikes in a class of neural mass models is concerned with. Since the measured signals are always contaminated by measurement noise, an algebraic estimation method is utilized to observe the state from the noisy measurement. The feedback control is constructed via the estimated state. The feasibility of using such a strategy to control epileptiform spikes in a regular network of coupled neural populations is demonstrated by simulations. In addition, the influence of the type of the controlled populations, the number of the controlled populations, and the control gain is investigated in details.

Article information

Source
J. Appl. Math., Volume 2013, Special Issue (2013), Article ID 792507, 11 pages.

Dates
First available in Project Euclid: 7 May 2014

Permanent link to this document
https://projecteuclid.org/euclid.jam/1399493305

Digital Object Identifier
doi:10.1155/2013/792507

Zentralblatt MATH identifier
1266.92030

Citation

Liu, Xian; Gao, Qing; Ma, Baiwang; Du, Jiajia; Ren, Wenju. Analysis and Control of Epileptiform Spikes in a Class of Neural Mass Models. J. Appl. Math. 2013, Special Issue (2013), Article ID 792507, 11 pages. doi:10.1155/2013/792507. https://projecteuclid.org/euclid.jam/1399493305


Export citation

References

  • O. David and K. J. Friston, “A neural mass model for MEG/EEG: coupling and neuronal dynamics,” NeuroImage, vol. 20, no. 3, pp. 1743–1755, 2003.
  • F. H. Lopes Da Silva, A. Hoeks, H. Smits, and L. H. Zetterberg, “Model of brain rhythmic activity. The alpha rhythm of the thalamus,” Kybernetic, vol. 15, no. 1, pp. 27–37, 1974.
  • B. H. Jansen, G. Zouridakis, and M. E. Brandt, “A neuro-physiologically-based mathematical model of flash visual evoked potentials,” Biological Cybernetics, vol. 68, no. 3, pp. 275–283, 1993.
  • B. H. Jansen and V. G. Rit, “Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns,” Biological Cybernetics, vol. 73, no. 4, pp. 357–366, 1995.
  • A. Spiegler, S. J. Kiebel, F. M. Atay, and T. R. Knösche, “Bifurca-tion analysis of neural mass models: impact of extrinsic inputs and dendritic time constants,” NeuroImage, vol. 52, no. 3, pp. 1041–1058, 2010.
  • G. Huang, D. Zhang, J. Meng, and X. Zhu, “Interactions between two neural populations: a mechanism of chaos and oscillation in neural mass model,” Neurocomputing, vol. 74, no. 6, pp. 1026–1034, 2011.
  • A. Babajani and H. Soltanian-Zadeh, “Integrated MEG/EEG and fMRI model based on neural masses,” IEEE Transactions on Biomedical Engineering, vol. 53, no. 9, pp. 1794–1801, 2006.
  • R. C. Sotero, N. J. Trujillo-Barreto, Y. Iturria-Medina, F. Carbonell, and J. C. Jimenez, “Realistically coupled neural mass models can generate EEG rhythms,” Neural Computation, vol. 19, no. 2, pp. 478–512, 2007.
  • F. Cona, M. Zavaglia, M. Massimini, M. Rosanova, and M. Ursino, “A neural mass model of interconnected regions simulates rhythm propagation observed via TMS-EEG,” NeuroImage, vol. 57, no. 3, pp. 1045–1058, 2011.
  • O. David, L. Harrison, and K. J. Friston, “Modelling event-related responses in the brain,” NeuroImage, vol. 25, no. 3, pp. 756–770, 2005.
  • K. J. Friston, “Models of brain function in neuroimaging,” Annual Review of Psychology, vol. 56, pp. 57–87, 2005.
  • G. Yvert, M. Perrone-Bertolotti, M. Baciu, and O. David, “Dynamic causal modeling of spatiotemporal integration of phonological and semantic processes: an electroencephalographic study,” Journal of Neuroscience, vol. 32, no. 12, pp. 4297–4303, 2012.
  • S. J. Kiebel, M. I. Garrido, R. Moran, C. C. Chen, and K. J. Friston, “Dynamic causal modeling for EEG and MEG,” Human Brain Mapping, vol. 30, no. 6, pp. 1866–1876, 2009.
  • S. J. Kiebel, O. David, and K. J. Friston, “Dynamic causal model-ling of evoked responses in EEG/MEG with lead field parameterization,” NeuroImage, vol. 30, no. 4, pp. 1273–1284, 2006.
  • S. J. Kiebel, M. I. Garrido, and K. J. Friston, “Dynamic causal modelling of evoked responses: the role of intrinsic connections,” NeuroImage, vol. 36, no. 2, pp. 332–377, 2007.
  • R. J. Moran, K. E. Stephan, T. Seidenbecher, H. C. Pape, R. J. Dolan, and K. J. Friston, “Dynamic causal models of steady-state responses,” NeuroImage, vol. 44, no. 3, pp. 796–811, 2009.
  • F. Wendling, J. J. Bellanger, F. Bartolomei, and P. Chauvel, “Relevance of nonlinear lumped-parameter models in the analysisof depth-EEG epileptic signals,” Biological Cybernetics, vol. 83, no. 4, pp. 367–378, 2000.
  • M. Goodfellow, K. Schindler, and G. Baier, “Intermittent spike-wave dynamics in a heterogeneous, spatially extended neural mass model,” NeuroImage, vol. 55, no. 3, pp. 920–932, 2011.
  • F. Rosenow and H. Lüders, “Presurgical evaluation of epilepsy,” Brain, vol. 124, no. 9, pp. 1683–1700, 2001.
  • M. Goodfellow, K. SchindleR, and G. Baier, “Self-organised transients in a neural mass model of epileptogenic tissue dynamics,” Neuroimage, vol. 59, no. 3, pp. 2644–2704, 2012.
  • A. L. Velasco, F. Velasco, M. Velasco, D. Trejo, G. Castro, and J. D. Carrillo-Ruiz, “Electrical stimulation of the hippocampal epileptic foci for seizure control: a double-blind, long-term follow-up study,” Epilepsia, vol. 48, no. 10, pp. 1895–1903, 2007.
  • F. T. Sun, M. J. Morrell, and R. E. Wharen, “Responsive cortical stimulation for the treatment of epilepsy,” Neurotherapeutics, vol. 5, no. 1, pp. 68–74, 2008.
  • S. Sunderam, B. Gluckman, D. Reato, and M. Bikson, “Toward rational design of electrical stimulation strategies for epilepsy control,” Epilepsy and Behavior, vol. 17, no. 1, pp. 6–22, 2010.
  • S. J. Schiff, Neural Control Engineering-the Emerging Intersection Between Control theory and Neuroscience, The MIT Press, Cambridge, Mass, USA, 2012.
  • M. Fliss and H. Sira-Ramirez, “Control via state estimation of some nonlinear systems,” 2004, IFAC Symposium on Nonlinear Control Systtems, http://hal.inria.fr/inria-00001096/.
  • M. Mboup, C. Join, and M. Fliss, “A revised look at numerical differentiation with an application to nonlinear feedback control,” in Proceedings of the 15th Mediterranean Conference on Control and Automation, 2007, http://hal.inria.fr/inria-00142588/fr/.
  • M. Fliess, C. Join, and H. Sira-Ramírez, “Closed-loop fault-tolerant control for uncertain nonlinear systems,” in Control and Observer Design for Nonlinear Finite and Infinite Dimensional Systems, vol. 322 of Lecture Notes in Control and Information Sciences, pp. 217–233, Springer, Berlin, Germany, 2005.
  • M. A. Dichter, “Basic mechanisms of epilepsy: targets for thera-peutic intervention,” Epilepsia, vol. 38, supplement 9, pp. S2–S6, 1997.
  • D. R. Fish, P. Gloor, F. L. Quesney, and A. Olivier, “Clinical responses to electrical brain stimulation of the temporal and frontal lobes in patients with epilepsy. Pathophysiological implications,” Brain, vol. 116, no. 2, pp. 397–414, 1993.
  • P. A. Gédouin, E. Delaleau, J. M. Bourgeot, C. Join, S. Arbab Chirani, and S. Calloch, “Experimental comparison of classical PID and model-free control: position control of a shape memory alloy active spring,” Control Engineering Practice, vol. 19, no. 5, pp. 433–441, 2011.