Journal of Applied Mathematics

  • J. Appl. Math.
  • Volume 2014, Special Issue (2013), Article ID 987054, 10 pages.

A New Decision Model for Reducing Trim Loss and Inventory in the Paper Industry

Fu-Kwun Wang and Feng-Tai Liu

Full-text: Open access

Abstract

In the paper industry, numerous studies have explored means of optimizing order allocation and cutting trim loss. However, enterprises may not adopt the resulting solutions because some widths of the inventory exceed or are less than those required for acceptable scheduling. To ensure that the results better suit the actual requirements, we present a new decision model based on the adjustment of scheduling and limitation of inventory quantity to differentiate trim loss and inventory distribution data. Differential analysis is used to reduce data filtering and the information is valuable for decision making. A numerical example is presented to illustrate the applicability of the proposed method. The results show that our proposed method outperforms the manual method regarding scheduling quantity and trim loss.

Article information

Source
J. Appl. Math., Volume 2014, Special Issue (2013), Article ID 987054, 10 pages.

Dates
First available in Project Euclid: 26 March 2014

Permanent link to this document
https://projecteuclid.org/euclid.jam/1395854705

Digital Object Identifier
doi:10.1155/2014/987054

Citation

Wang, Fu-Kwun; Liu, Feng-Tai. A New Decision Model for Reducing Trim Loss and Inventory in the Paper Industry. J. Appl. Math. 2014, Special Issue (2013), Article ID 987054, 10 pages. doi:10.1155/2014/987054. https://projecteuclid.org/euclid.jam/1395854705


Export citation

References

  • P. C. Gilmore and R. E. Gomory, “A linear programming approach to the cutting-stock problem,” Operations Research, vol. 9, no. 6, pp. 849–859, 1961.
  • W. Gochet and M. Vandebroek, “A dynamic programming based heuristic for industrial buying of cardboard,” European Journal of Operational Research, vol. 38, no. 1, pp. 104–112, 1989.
  • C. H. Da\vgli, “Knowledge-based systems for cutting stock problems,” European Journal of Operational Research, vol. 44, no. 2, pp. 160–166, 1990.
  • H. Foerster and G. Wäscher, “Simulated annealing for order spread minimization in sequencing cutting patterns,” European Journal of Operational Research, vol. 110, no. 2, pp. 272–281, 1998.
  • P. H. Vance, “Branch-and-price algorithms for the one-dimensional cutting stock problem,” Computational Optimization and Applications, vol. 9, no. 3, pp. 211–228, 1998.
  • M. Gradišar, G. Resinovič, J. Jesenko, and M. Kljajić, “A sequential heuristic procedure for one-dimensional cutting,” European Journal of Operational Research, vol. 114, no. 3, pp. 557–568, 1999.
  • M. Sakawa, “Interactive fuzzy programming for multi-level 0-1 programming problems through genetic algorithms,” European Journal of Operational Research, vol. 114, no. 3, pp. 580–588, 1999.
  • S. M. A. Suliman, “Pattern generating procedure for the cutting stock problem,” International Journal of Production Economics, vol. 74, no. 1–3, pp. 293–301, 2001.
  • W. Weng and T. Sung, “Optimization of a line-cutting procedure for ship hull construction by an effective tabu search,” International Journal of Production Research, vol. 46, no. 21, pp. 5935–5949, 2007.
  • J. A. Abbasi and M. H. Sahir, “Development of optimal cutting plan using linear programming tools and MATLAB algorithm,” International Journal of Innovation, Management and Technology, vol. 1, pp. 483–492, 2010.
  • G. C. Wang, C. P. Li, J. Lv, X. X. Zhao, and H. Y. Cuo, “An effect algorithm design for the one-dimensional cutting-stock problem,” Advanced Materials Research, vol. 602–604, pp. 1753–1756, 2013.
  • M. Ali, C. W. Ahn, and M. Pant, “Trim loss optimization by an improved differential evolution,” Mathematical Problems in Engineering, vol. 2013, Article ID 706350, 8 pages, 2013.
  • W. Tharmmaphornphilas, S. Puemsin, and P. Siripongwutikorn, “A MILP model to select cutting machines and cutting patterns to minimize paper loss,” in Proceedings of the International MultiConference of Engineers and Computer Scientists, pp. 1155–1160, Hong Kong, March 2013.
  • R. Morabito and M. Arenales, “Optimizing the cutting of stock plates in a furniture company,” International Journal of Production Research, vol. 38, no. 12, pp. 2725–2742, 2000.
  • S. Menon and L. Schrage, “Order allocation for stock cutting in the paper industry,” Operations Research, vol. 50, no. 2, pp. 324–332, 2002.
  • G. Wäscher, H. Haußner, and H. Schumann, “An improved typology of cutting and packing problems,” European Journal of Operational Research, vol. 183, no. 3, pp. 1109–1130, 2007.
  • K. Matsumoto, S. Umetani, and H. Nagamochi, “On the one-dimensional stock cutting problem in the paper tube industry,” Journal of Scheduling, vol. 14, no. 3, pp. 281–290, 2011.
  • A. Mobasher and A. Ekici, “Solution approaches for the cutting stock problem with setup cost,” Computers & Operations Research, vol. 40, no. 1, pp. 225–235, 2013.
  • M. C. Gramani and P. M. França, “The combined cutting stock and lot-sizing problem in industrial processes,” European Journal of Operational Research, vol. 174, no. 1, pp. 509–521, 2006.
  • A. Ritvirool, “A trim-loss minimization in a produce-handling vehicle production plant,” Journal of Science and Technology, vol. 29, no. 1, pp. 157–164, 2007.
  • S. S. Chauhan, A. Martel, and S. D'Amour, “Roll assortment optimization in a paper mill: an integer programming approach,” Computers and Operations Research, vol. 35, no. 2, pp. 614–627, 2008.
  • S. C. Poltroniere, K. C. Poldi, F. M. B. Toledo, and M. N. Arenales, “A coupling cutting stock-lot sizing problem in the paper industry,” Annals of Operations Research, vol. 157, no. 1, pp. 91–104, 2008.
  • L. Kos and J. Duhovnik, “Cutting optimization with variable-sized stock and inventory status data,” International Journal of Production Research, vol. 40, no. 10, pp. 2289–2301, 2002.
  • M. Gradišar, G. Resinovič, and M. Kljajić, “Evaluation of algorithms for one-dimensional cutting,” Computers & Operations Research, vol. 29, no. 9, pp. 1207–1220, 2002.
  • P. Trkman and M. Gradišar, “One-dimensional cutting stock optimization in consecutive time periods,” European Journal of Operational Research, vol. 179, no. 2, pp. 291–301, 2007.
  • A. C. Cherri, M. N. Arenales, and H. H. Yanasse, “The one-dimensional cutting stock problem with usable leftover–-a heuristic approach,” European Journal of Operational Research, vol. 196, no. 3, pp. 897–908, 2009.
  • Y. Cui and Y. Yang, “A heuristic for the one-dimensional cutting stock problem with usable leftover,” European Journal of Operational Research, vol. 204, no. 2, pp. 245–250, 2010.
  • S. A. Araujo, A. A. Constantino, and K. C. Poldi, “An evolutionary algorithm for the one-dimensional cutting stock problem,” International Transactions in Operational Research, vol. 18, no. 1, pp. 115–127, 2011.
  • J. Erjavec, M. Gradišar, and P. Trkman, “Assessment of stock size to minimize cutting stock production costs,” International Journal of Production Economics, vol. 135, no. 1, pp. 170–176, 2012.
  • J. Erjavec, M. Gradišar, and P. Trkman, “Renovation of the cutting stock process,” International Journal of Production Research, vol. 47, no. 14, pp. 3979–3996, 2009.
  • P. Keskinocak, F. Wu, R. Goodwin et al., “Scheduling solutions for the paper industry,” Operations Research, vol. 50, no. 2, pp. 249–259, 2002.
  • “Lingo Software,” Version 11, Lindo Systems, Chicago, Ill, USA, 2009. \endinput