Journal of Applied Mathematics

Equivalency Relations between Continuous g-Frames and Stability of Alternate Duals of Continuous g-Frames in Hilbert C*-Modules

Zhong-Qi Xiang

Full-text: Open access

Abstract

We introduce the modular continuous g-Riesz basis to improve one existing result for continuous g-Riesz basis in Hilbert C*-modules, and then we study the equivalency relations between continuous g-frames in Hilbert C*-modules, and, in particular, we obtain two necessary and sufficient conditions under which two continuous g-frames are similar. Finally, we generalize a stability result for alternate duals of g-frames in Hilbert spaces to alternate duals of continuous g-frames in Hilbert C*-modules.

Article information

Source
J. Appl. Math., Volume 2013 (2013), Article ID 192732, 11 pages.

Dates
First available in Project Euclid: 14 March 2014

Permanent link to this document
https://projecteuclid.org/euclid.jam/1394808148

Digital Object Identifier
doi:10.1155/2013/192732

Mathematical Reviews number (MathSciNet)
MR3108947

Zentralblatt MATH identifier
06950546

Citation

Xiang, Zhong-Qi. Equivalency Relations between Continuous g-Frames and Stability of Alternate Duals of Continuous g-Frames in Hilbert ${C}^{*}$ -Modules. J. Appl. Math. 2013 (2013), Article ID 192732, 11 pages. doi:10.1155/2013/192732. https://projecteuclid.org/euclid.jam/1394808148


Export citation

References

  • R. J. Duffin and A. C. Schaeffer, “A class of nonharmonic Fourier series,” Transactions of the American Mathematical Society, vol. 72, pp. 341–366, 1952.
  • I. Daubechies, A. Grossmann, and Y. Meyer, “Painless nonorthogonal expansions,” Journal of Mathematical Physics, vol. 27, no. 5, pp. 1271–1283, 1986.
  • D. Han and D. R. Larson, “Frames, bases and group representations,” Memoirs of the American Mathematical Society, vol. 147, no. 697, 2000.
  • O. Christensen, An Introduction to Frames and Riesz Bases, Applied and Numerical Harmonic Analysis, Birkhäuser Boston, Boston, Mass, USA, 2003.
  • I. Daubechies, Ten Lectures on Wavelets, vol. 61, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, Pa, USA, 1992.
  • C. E. Heil and D. F. Walnut, “Continuous and discrete wavelet transforms,” SIAM Review, vol. 31, no. 4, pp. 628–666, 1989.
  • H. G. Feichtinger and T. Strohmer, Gabor Analysis and Algorithms, Applied and Numerical Harmonic Analysis, Birkhäuser Boston, Boston, Mass, USA, 1998.
  • M. Frazier and B. Jawerth, “Decomposition of Besov spaces,” Indiana University Mathematics Journal, vol. 34, no. 4, pp. 777–799, 1985.
  • K. Gröchenig, “Describing functions: atomic decompositions versus frames,” Monatshefte für Mathematik, vol. 112, no. 1, pp. 1–42, 1991.
  • W.-C. Sun, “$G$-frames and $g$-Riesz bases,” Journal of Mathematical Analysis and Applications, vol. 322, no. 1, pp. 437–452, 2006.
  • M. Frank and D. R. Larson, “Frames in Hilbert ${C}^{\ast\,\!}$-modules and ${C}^{\ast\,\!}$-algebras,” Journal of Operator Theory, vol. 48, no. 2, pp. 273–314, 2002.
  • A. Khosravi and B. Khosravi, “Frames and bases in tensor products of Hilbert spaces and Hilbert ${C}^{\ast\,\!}$-modules,” Proceedings of the Indian Academy of Sciences Mathematical Sciences, vol. 117, no. 1, pp. 1–12, 2007.
  • A. Khosravi and B. Khosravi, “Fusion frames and $g$-frames in Hilbert ${C}^{\ast\,\!}$-modules,” International Journal of Wavelets, Multiresolution and Information Processing, vol. 6, no. 3, pp. 433–446, 2008.
  • X.-C. Xiao and X.-M. Zeng, “Some properties of $\text{g}$-frames in Hilbert ${C}^{\ast\,\!}$-modules,” Journal of Mathematical Analysis and Applications, vol. 363, no. 2, pp. 399–408, 2010.
  • A. Khosravi and B. Khosravi, “$G$-frames and modular Riesz bases in Hilbert ${C}^{\ast\,\!}$-modules,” International Journal of Wavelets, Multiresolution and Information Processing, vol. 10, no. 2, p. 12, 2012.
  • G. Kaiser, A Friendly Guide to Wavelets, Birkhäuser Boston, Boston, Mass, USA, 1994.
  • S. T. Ali, J.-P. Antoine, and J.-P. Gazeau, “Continuous frames in Hilbert space,” Annals of Physics, vol. 222, no. 1, pp. 1–37, 1993.
  • J.-P. Gabardo and D. Han, “Frames associated with measurable spaces,” Advances in Computational Mathematics, vol. 18, no. 2–4, pp. 127–147, 2003.
  • A. Askari-Hemmat, M. A. Dehghan, and M. Radjabalipour, “Generalized frames and their redundancy,” Proceedings of the American Mathematical Society, vol. 129, no. 4, pp. 1143–1147, 2001.
  • S. T. Ali, J.-P. Antoine, and J.-P. Gazeau, Coherent States, Wavelets and Their Generalizations, Springer, Berlin, Germany, 2000.
  • M. R. Kouchi and A. Nazari, “Continuous g-frame in Hilbert ${C}^{\ast\,\!}$-modules,” Abstract and Applied Analysis, vol. 2011, Article ID 361595, 20 pages, 2011.
  • E. C. Lance, Hilbert C$^{\ast\,\!}$-Modules: A Toolkit for Operator Algebraist, vol. 210 of London Mathematical Society Lecture Note Series, Cambridge University Press, Cambridge, UK, 1995.
  • N. E. Wegge-Olsen, K-Theory and C$^{\ast\,\!}$-Algebras, A Friendly Approach, The Clarendon Press Oxford University Press, Oxford, England, 1993.
  • W. L. Paschke, “Inner product modules over ${B}^{\ast\,\!}$-algebras,” Transactions of the American Mathematical Society, vol. 182, pp. 443–468, 1973.
  • L. Arambašić, “On frames for countably generated Hilbert ${C}^{\ast\,\!}$-modules,” Proceedings of the American Mathematical Society, vol. 135, no. 2, pp. 469–478, 2007.
  • Z. Q. Xiang, “Comment on: continuous g-Frame in Hilbert ${C}^{\ast\,\!}$-modules,” Abstract and Applied Analysis, vol. 2013, Article ID 243453, 2 pages, 2013.
  • A. Najati and A. Rahimi, “Generalized frames in Hilbert spaces,” Iranian Mathematical Society, vol. 35, no. 1, pp. 97–109, 2009.
  • H. G. Feichtinger and W. Sun, “Stability of Gabor frames with arbitrary sampling points,” Acta Mathematica Hungarica, vol. 113, no. 3, pp. 187–212, 2006.
  • W. Sun, “Stability of $g$-frames,” Journal of Mathematical Analysis and Applications, vol. 326, no. 2, pp. 858–868, 2007.
  • Y. C. Zhu, “Characterizations of $g$-frames and $g$-Riesz bases in Hilbert spaces,” Acta Mathematica Sinica, vol. 24, no. 10, pp. 1727–1736, 2008.
  • A. A. Arefijamaal and S. Ghasemi, “On characterization and stability of alternate dual of g-frames,” Turkish Journal of Mathematics, vol. 37, no. 1, pp. 71–79, 2013.